viscosity reduction
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 169)

H-INDEX

28
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122270
Author(s):  
Jipeng Xu ◽  
Ning Wang ◽  
Su Xue ◽  
Houjun Zhang ◽  
Jinli Zhang ◽  
...  

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Teng Lu ◽  
Faqiang Dang ◽  
Haitao Wang ◽  
Qingmin Zhao ◽  
Zhengxiao Xu

Nanoparticle-assisted microwave heating of heavy oil has the advantages of fast temperature rise and high thermal efficiency. Compared with traditional heating methods, it can reduce viscosity in a shorter time. In addition, the heavy components in the heavy oil are cracked into light components at high temperatures (this high temperature cannot be reached by conventional heating methods). This process is irreversible and avoids the problem of viscosity recovery of heavy oil after the temperature is reduced. Through absorbing microwave heating experiments, study the effect of nanoparticles on the improvement of the ability of heavy oil to absorb waves and raise temperature; through the heavy oil upgrading experiment and the four-component analysis experiment, the effect of adding hydrogen donor to assist microwave on the viscosity reduction of heavy oil upgrading by nanoparticles was studied, and the problem of viscosity recovery was determined; Through the gravity drainage experiment, the mechanism of nanoparticle-assisted microwave to improve the recovery of heavy oil is studied, and the influence of water content, nanocatalyst, and microwave power on the production of drainage is analyzed. The results show that nanoparticles can improve the wave absorption and heating capacity of heavy oil, and adding 0.6 wt% of nanomagnetic iron oxide catalyst can increase the heating rate of heavy oil in microwave by 60.6%; nanoparticle-assisted microwave heating method can effectively upgrade heavy oil and reduce viscosity. The experimental conditions are 2 wt% tetralin mass concentration, 0.5 wt% nano-Fe3O4 particle mass concentration, microwave heating time 50-60 min, and microwave power 539 W. Under this experimental condition, the viscosity is reduced by 40%. This method has viscosity recovery problems, but final viscosity reduction effect is still very significant. Obtaining the mechanism of nanoparticle-assisted microwave to enhance oil recovery, one of which is that nanoparticles improve the wave absorption and heating capacity of heavy oil and increase the heating speed of heavy oil; the second is that the nanoparticles form local high temperature under the action of microwave, which catalyzes the hydrocracking reaction between the heavy components in the heavy oil and the hydrogen donor, upgrading and reducing the viscosity of the heavy oil, and accelerating the production of heavy oil.


2022 ◽  
Author(s):  
Rajendra A. Kalgaonkar ◽  
Qasim Sahu ◽  
Nour Baqader

Abstract Gelled acid systems based upon gelation of hydrochloric acid (HCl) are widely used in in both matrix acidizing and fracture acidizing treatments to prevent acidizing fluid leak-off into high permeable zones of a reservoir. The gelled up fluid system helps retard the acid reaction to allow deeper acid penetration for hydrocarbon productivity enhancement. The in-situ gelation is typically achieved by using crosslinked polymers with the acid. Conventional in-situ crosslinked gelled acid systems are made up of polyacrylamide gelling agent, iron based crosslinker and a breaker chemical in addition to other additives, with the acid as the base fluid. However, the polymer-based systems can lead to damaging the formation due to a variety of reasons including unbroken polymer residue. Additionally, the iron-based crosslinker systems can lead to scaling, precipitation and or sludge formation after the acid reacts with the formation, resulting in formation damage and lowering of hydrocarbon productivity. In this paper we showcase a new nanoparticles based gelled acid system that overcomes the inherent challenges faced by conventional in-situ crosslinked gelled acid systems. The new system can work in 5 to 20 % HCl up to 300°F. The new system does not contain any polymer or iron based crosslinker that can potentially damage the formation. It comprises nanoparticles, a gelation activator, acidizing treatment additives along with HCl. The new in-situ gelled acid system has low viscosity at surface making it easy to pump. It gels up at elevated temperatures and pH of 1 to 4, which helps with diverting the tail end acid to tighter or damaged zones of the formation. We demonstrate that the viscosification and eventual gelation of the new system can be achieved as the acid reacts with a carbonate formation and the pH rises above 1. As the acid further reacts and continues to spend there by increasing the pH beyond 4, the gel demonstrates reduction of viscosity. This assists in a better cleanup post the acidizing treatment. Various experimental techniques were used to showcase the development of the nanoparticle based acid diversion fluid. Static and dynamic gelation studies as a function of time, temperature and pH are reported. The gelation performance of the new system was evaluated at temperatures up to 300°F and discussed in the paper. Comparative performance of different types of gelation activators on the gelation profile of the nanoparticles is evaluated. It is also shown that the gelation and viscosity reduction is entirely a pH dependent phenomenon and does not require any additional breaker chemistry, and therefore provides more control over the system performance. The novelty of the new gelled acid system is that it is based upon nanoparticles making it less prone to formation damage as compared to a crosslinked polymer based system.


2022 ◽  
Author(s):  
ZHIBIN LEI ◽  
J. Davies

Dual inward dipping subduction often produces complex deformation patterns in the overriding plate. However, the geodynamic process of how dual inward dipping subduction relates to this deformation is still poorly understood. Here we apply a composite viscosity, dependent on multiple parameters, e.g., temperature, pressure, strain rate etc., in 2-D thermo-mechanical numerical modelling to investigate how dual inward dipping subduction modifies the rheological structure of the overriding plate. Three variables are investigated to understand what controls the maximum degree of weakening. We find that the initial length and thickness of the overriding plate are negatively correlated with the magnitude of viscosity reduction. While the initial thickness of the subducting plate positively relates to the magnitude of viscosity reduction. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension, to 2) limited thermal lithosphere thinning, and 3) localised rifting followed by spreading extension. Compared with single sided subduction, dual inward dipping subduction further reduces the magnitude of viscosity of the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow underlying the overriding plate. Three types of feedback weakening cycles are recognised, among which the strain rate weakening mechanism plays the dominant role in lowering the viscosity of the overriding plate throughout the simulation. Strain rate weakening is also a precondition for initiating thermal weakening, strain localisation and lithosphere thinning.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Yu ◽  
Hongping Quan ◽  
Zhiyu Huang ◽  
Pengfei Li ◽  
Shihao Chang

2021 ◽  
Vol 12 (23) ◽  
pp. 49-60
Author(s):  
Noor M. Asmael ◽  
◽  
Mohammed Y. Fattah ◽  
Abdalmhiman Kadhim ◽  
◽  
...  

Warm additives had wide popularity in recent years due to saving in energy and lowering emissions dealt with asphalt mixture production. Warm Mix Asphalt (WMA) is produced by using foaming technology or reducing -viscosity additives of binder to enhance the rheological properties. In this study, organic-based additives (Asphaltan A and Asphaltan B) are used to investigate their effect to minimize the viscosity and lower the temperature of asphalt mixture production. Bitumen is mixed with three doses of each additive: 1, 2, and 3% of its weight. The binder viscosity was measured by rotational viscometer with and without the additives at three different temperatures. The study showed that the organic additives have a positive impact on the behavior of the binder in terms of viscosity reduction and made enhancements in terms of bitumen properties. This result could be useful in the reduction of production temperature and quantity of odour emissions.


2021 ◽  
Author(s):  
Rajendra Kalgaonkar ◽  
Mohammed Bataweel ◽  
Mustafa Alkhowaildi ◽  
Qasim Sahu

Abstract Gelled acid systems based upon gelation of hydrochloric acid (HCl) are used widely in acid stimulation treatments to prevent fluid leak-off into the high permeable zones of a reservoir. The gelled-up fluid system helps retard the acid reaction to allow deeper acid penetration for hydrocarbon productivity enhancement. Conventional in-situ crosslinked gelled acid systems are made up of polyacrylamide gelling agent, iron-based crosslinker, and a breaker chemical in addition to other additives, with the acid as the base fluid. The polymer-based systems can lead to damage to formation due to a variety of reasons including unbroken polymer residue. Additionally, the iron-based crosslinker systems can lead to scaling or precipitation after the acid reacts with the formation, resulting in formation damage and lowering of hydrocarbon productivity. In this paper, we showcase a new nanoparticles-based gelled acid system that does not contain any polymer or iron-based crosslinker that can potentially damage the formation. It comprises nanoparticles, a gelation activator, acidizing treatment additives along with HCl. The new in-situ gelled acid system has low viscosity at surface making it easy to pump. With increase in the temperature and as the acid spends there is a viscosity increase. The viscosification and eventual gelation of the new system can be achieved as the acid reacts with a carbonate formation. As the acid further reacts and continues to spend, the gel demonstrates reduction of viscosity. This assists in a better cleanup post the acidizing treatment. Various experimental techniques were used to highlight the development of the nanoparticle-based acid diversion fluid. The gelation properties of the acid system, as a function of acid strength and temperature, are investigated. Static and dynamic gelation studies as a function of time, temperature and pH are reported. It is demonstrated that the viscosification property is a function of pH and the gelation occurs in a pH widow from 1 to 5 pH units. The gelation performance of the new system is evaluated at temperatures up to 300°F. The effect of different types of surface modification chemistries on the gelation properties is investigated. It is also shown that the gelation and viscosity reduction is entirely a pH dependent phenomenon and does not require any additional breaker chemistry; and therefore provides more control over the system performance. The new gelled acid system overcomes the inherent challenges faced by conventional in-situ crosslinked gelled acid systems; as it is based upon nanoparticles making it less prone to formation damage as compared to a crosslinked polymer-based system.


2021 ◽  
Author(s):  
Tongwen Jiang ◽  
Daiyu ZHOU ◽  
Liming LIAN ◽  
Yiming WU ◽  
Zangyuan WU ◽  
...  

Abstract Different from other gas drive processes, phase behavior performs more significant roles in natural gas drive process. The main reason is that more severe mass transfer effect and similar phase solubility effect have been caused by multicomponent interaction. This paper provides a series of methods to study the phase behavior in natural gas drive process, aiming to reveal further mechanism and give technical supports to the on-site practice in T_D Reservoir with HTHP. Four key parameters of natural gas drive have been determined. Firstly, laboratory compounding method has been improved to obtain real components of formation fluids and actual injected gas at formation condition (140°C, 45MPa). Secondly, 19 sets of slim tube test has been carried to determine MMP (minimum miscible pressure) and the injected gas components ensuring miscibility. Thirdly, swelling test and laser method have been used to separately obtain the viscosity reduction degree and solid deposition effects. Finally, multiple contact test has been carried to describe the miscibility behavior. All the above have been applied in T_D Reservoir. Conclusions could be drawn from the results obtained by the methods above. Firstly, swelling capacity of crude oil could be enhanced by natural gas for the formation volume factor of crude oil in T_D Reservoir increased by 57% and the viscosity decreased by 83% after natural gas injection. Secondly, MMP of dry gas and crude oil in T_D Reservoir is 43.5MPa with a miscible displacement efficiency above 90% (>30% compared with immiscible displacement efficiency), and the content of N2+C1 should be controlled over 88%. Thirdly, results of 5 levels contact experiments shows that miscibility behavior of natural gas and oil from T_D Reservoir performs an evaporative-condensate composite miscible process in which the condensate miscible process takes the lead. Finally, obvious solid point has not been observed in natural gas drive process of crude oil from T_D Reservoir at the formation temperature, and the effect of solid deposition on the fluid flow in formation could be ignored because of trace amount of solid solution (<1mg/ml) and minute formation permeability damage (<8%). The achievements above have been applied in T_D Reservoir as one of the important technical means supporting over 350,000 tons increased production by natural gas drive. A systematic methods have been reorganized to research the phase behavior in natural gas drive process and half of these methods mentioned above get partially improvement. These physical simulation experiments have covered most mainly processes and the key parameters in reservoirs with HTHP and natural gas drive, including mass transfer, viscosity, expansion, volume coefficient, MMP, miscibility behavior and solid deposition. Every experiment gives a quantitative analysis which possesses satisfied practicability in field application.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7394
Author(s):  
Olga Kudryashova ◽  
Marat Lerner ◽  
Alexander Vorozhtsov ◽  
Sergei Sokolov ◽  
Vladimir Promakhov

This article dwells upon the additive manufacturing of high-energy materials (HEM) with regards to the problems of this technology’s development. This work is aimed at identifying and describing the main problems currently arising in the use of AM for nanostructured high-energy materials and gives an idea of the valuable opportunities that it provides in the hope of promoting further development in this area. Original approaches are proposed for solving one of the main problems in the production of nanostructured HEM—safety and viscosity reduction of the polymer-nanopowder system. Studies have shown an almost complete degree of deagglomeration of microencapsulated aluminum powders. Such powders have the potential to create new systems for safe 3D printing using high-energy materials.


Sign in / Sign up

Export Citation Format

Share Document