A Comparative Laboratory Analysis of Steamflooding With Horizontal Wells In Heavy Oil Reservoirs With Bottom Water Zone

1999 ◽  
Vol 38 (13) ◽  
Author(s):  
S. Bagci ◽  
T. Aybak ◽  
A. Shamsul
2013 ◽  
Vol 16 (01) ◽  
pp. 60-71 ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

Summary Techniques have been developed to experimentally and numerically evaluate performance of water-alternating-CO2 processes in thin heavy-oil reservoirs for pressure maintenance and improving oil recovery. Experimentally, a 3D physical model consisting of three horizontal wells and five vertical wells is used to evaluate the performance of water-alternating-CO2 processes. Two well configurations have been designed to examine their effects on heavy-oil recovery. The corresponding initial oil saturation, oil-production rate, water cut, oil recovery, and residual-oil-saturation (ROS) distribution are examined under various operating conditions. Subsequently, numerical simulation is performed to match the experimental measurements and optimize the operating parameters (e.g., slug size and water/CO2 ratio). The incremental oil recoveries of 12.4 and 8.9% through three water-alternating-CO2 cycles are experimentally achieved for the aforementioned two well configurations, respectively. The excellent agreement between the measured and simulated cumulative oil production indicates that the displacement mechanisms governing water-alternating-CO2 processes have been numerically simulated and matched. It has been shown that water-alternating-CO2 processes implemented with horizontal wells can be optimized to significantly improve performance of pressure maintenance and oil recovery in thin heavy-oil reservoirs. Although well configuration imposes a dominant impact on oil recovery, the water-alternating-gas (WAG) ratios of 0.75 and 1.00 are found to be the optimum values for Scenarios 1 and 2, respectively.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Binshan Ju ◽  
Xiaofeng Qiu ◽  
Shugao Dai ◽  
Tailiang Fan ◽  
Haiqing Wu ◽  
...  

The coning problems for vertical wells and the ridging problems for horizontal wells are very difficult to solve by conventional methods during oil production from reservoirs with bottom water drives. If oil in a reservoir is too heavy to follow Darcy’s law, the problems may become more complicated for the non-Newtonian properties of heavy oil and its rheology. To solve these problems, an innovative completion design with downhole water sink was presented by dual-completion in oil and water columns with a packer separating the two completions for vertical wells or dual-horizontal wells. The design made it feasible that oil is produced from the formation above the oil water contact (OWC) and water is produced from the formation below the OWC, respectively. To predict quantitatively the production performances of production well using the completion design, a new improved mathematical model considering non-Newtonian properties of oil was presented and a numerical simulator was developed. A series of runs of an oil well was employed to find out the best perforation segment and the fittest production rates from the formations above and below OWC. The study shows that the design is effective for heavy oil reservoir with bottom water though it cannot completely eliminate the water cone formed before using the design. It is a discovery that the design is more favorable for new wells and the best perforation site for water sink (Sink 2) is located at the upper 1/3 of the formation below OWC.


Sign in / Sign up

Export Citation Format

Share Document