laboratory analysis
Recently Published Documents


TOTAL DOCUMENTS

809
(FIVE YEARS 197)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
Hana Taha ◽  
Moath Nasraween ◽  
Yousef Khader ◽  
Lujain Al Omari ◽  
Vanja Berggren

Background: Shawerma is a popular traditional food in the Eastern Mediterranean region. Aim: The aim of this study was to assess the shawerma handlers’ compliance with food safety practices and determine the microbial load and pathogenic organisms in the ready-to-eat chicken shawerma sandwiches in the restaurants of Amman, Jordan. Methods: This cross-sectional study used mixed methods including observational checklists to determine the compliance of food safety practices by 120 chicken shawerma handlers from 40 randomly selected restaurants in Amman. Additionally, pathogenic microorganisms were assessed by laboratory analysis in the ready-to-eat chicken shawerma sandwiches. Results: Only 2.5% and 10% complied, respectively, with separating knives and boards used for chicken from the ones used for vegetables. The compliance for maintaining proper temperatures for freezers and chillers were only 62% and 67%, respectively. As for hand-washing techniques and using disposable drying papers, the adherence was 5% and 7.5%, respectively. Laboratory analysis showed that 27.5% of the ready-to-eat shawerma had unacceptable levels of microorganisms. Conclusion: Our findings showed poor compliance of food safety practices in chicken shawerma restaurants of Amman. There is a need for capacity building and periodic evaluations of food handlers’ knowledge and practices within a comprehensive food safety program, carried out by qualified trainers. Keywords: chicken shawerma, food safety, Jordan


2022 ◽  
Vol 5 (1) ◽  
pp. 68
Author(s):  
Anastasiia Shuba ◽  
Tatiana Kuchmenko ◽  
Dariya Menzhulina

A technique was developed to evaluate and compensate for the drift of eight mass-sensitive sensors in an open detection cell in order to estimate the influence of external factors (temperature, changes in the chemical composition of the background) on the out-of-laboratory analysis of biosamples. The daily internal standardization of the system is an effective way to compensate for the sensor signal drift when the sorption properties of sensitive coatings change during their long-term, intensive operation. In this study, distilled water was proposed as a standard for water matrix-based biosamples (blood, exhaled breath condensate, urine, etc.). Further, internal standardization was based on daily calculation of the specific sensor signals by dividing the sensor signals for the biosample according to the corresponding averaged values obtained from three to five standard measurements. The stability of the sensor array operation was estimated using the theory of statistical process control (exponentially weighted moving average control charts) based on the specific signal of the sensor array. The control limits for the statistical quantity of the central tendency for each sensor and the whole array, as well as the variations of the sensor signals, were determined. The average times required for signal and run lengths, for the purpose of statistically substantiated monitoring of the electronic nose’s stability, were calculated. Based on an analysis of the tendency and variations in sensor signals during 3 months of operation, a technique was formulated to control the stability of the sensor array for the out-of-laboratory analysis of the biosamples. This approach was successfully verified by classifying the results of the analysis of the blood and water samples obtained for this period. The proposed technique can be introduced into the software algorithm of the electronic nose, which will improve decision-making during the long-term monitoring of health conditions in humans and animals.


Author(s):  
Corentin Deckers ◽  
Reza Soleimani ◽  
Olivier Denis ◽  
Pierre Bogaerts ◽  
Catherine Berhin ◽  
...  

Author(s):  
Emilaine Ferreira dos Santos ◽  
Vanessa Xavier de Melo ◽  
Suelen Ávila ◽  
Vitória Araújo Marques Dengo ◽  
Ana Laura Aristides Dall'igna ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 13656
Author(s):  
Jérôme Ngao ◽  
Macarena L. Cárdenas ◽  
Thierry Améglio ◽  
Jérôme Colin ◽  
Marc Saudreau

Trees participate in mitigating the urban heat island phenomenon thanks to their transpiration and shading. This cooling potential is highly dependent on leaf area. Nevertheless, leaf traits potentially vary across different land management practices in urban settings, thereby challenging the models used to estimate thermal budgets. The present study aims to investigate the variability of leaf area traits of linden (Tilia spp.) urban trees, and their effect on simulated tree transpiration. Reconstruction of the leaf area was undertaken at the tree scale at three different urban land management sites from three cities: London and Birmingham (UK) and Chantilly (France). The reconstruction combined allometric measurements at shoot and leaf scales, and a tree-scale 3D digitization with laboratory analysis using field data collected by citizen scientists. The management practices had a significant impact on leaf area, and on tree allometric relationships, which were propagated through the reconstruction process. Relative differences between the management practices ranged between 12% and 48% according to the city where the variable was considered (e.g., leaf area index, total leaf area, or tree transpiration). Trees in managed sites (i.e., individualized leaf crowns, frequent leaf litter removal, and standard thinning/pruning operations) develop a higher leaf area, thus promoting cooling potential. This study shows that the variability of leaf traits, and their responses to different land management, can be studied by comprehensive data collection through citizen science and lab-based modelling. It also highlights the importance of appropriate, well-designed urban planning, where landscaping using urban trees can play an even better role in climate proofing cities.


2021 ◽  
Author(s):  
◽  
Albert Edward Frampton

<p>In 2011, Waimarama received 80% of its annual rainfall in 48 hours. This extreme event with a return period of >100 years caused saturated hillslopes to collapse forming 100s of shallow landslides in the Puhokio Valley. This study collected soil samples from 54 exposed slip scarp horizons for laboratory analysis of soil mechanical properties. Field measurements of slip and slope angles, length, width and depth to determine that 23,212m³ of sediment was volume lost, from the 54 landslides. The field and lab measurements were used to generate a coherent understanding of landsliding at Waimarama. Laboratory analysis for liquid limits water content showed a high of 88.5% to a low of 18.8% and plastic limit water content had a high of 51% in the A horizon (organics) and low of 16.1%. Specific gravity also indicated a high reading 1.74 g/cm³ with a low of 1.16 g/cm³. The A horizon was able to tolerate high levels of water content in most tests, while the B horizon was capable of coping with some increase in water content. The C horizon was only able to handle low volumes of water, and was the main initiator of regolith collapse. The laboratory results indicated high saturation levels within the horizons of weak lithology of marine regolith that over caps impervious marine bedrock. The main cause for hillslope collapse and exposure of multiple translational and debris flow landslides was extreme saturation. However, towards the height of the rainfall event a 4.5 magnitude earthquake was recorded with unknown collateral consequences. Most slip locations were found in the aspects of east, south-east, west, and north-west, and on slope angles 15 -25°. The study confirmed previous surveys that regolith depth 80-100cm on impervious sandstone, siltstone/mudstone, when saturated over lengthy wet spells or from extreme precipitation, will collapse. In addition to the physical geographic study a survey was included to record individual and family accounts of the weather phenomenon. A questionnaire was prepared with specific questions that required yes or no answers. These questions dealt with loss of buildings, loss of land, animals, financial loss and recovery, economic loss, insurance and mitigation plans. The most affected were farmers and the next affected were householders while the holiday park was the worst affected of small businesses. Insurance was a significant help in most recoveries. Land rehabilitation was mitigated with new plantings and some aerial sowing, otherwise many slips were left to revegetate naturally. Economic and financial loss was severe for most farmers, due to pasture loss and animal relocation. Extreme rainfall causes slips that affect humans, but they can be mitigated. The Waimarama event is one of many events that can happen countrywide, the results can be a disastrous loss of personal, economic and financial assets, loss of infrastructure, including roading, bridges and communication. These are factors that many people and communities only realise when it happens to them. Mitigation against such events might include adequate insurance and knowledge of what to do, and where to go should an event happen unexpectedly and without warning.</p>


2021 ◽  
Author(s):  
◽  
Albert Edward Frampton

<p>In 2011, Waimarama received 80% of its annual rainfall in 48 hours. This extreme event with a return period of >100 years caused saturated hillslopes to collapse forming 100s of shallow landslides in the Puhokio Valley. This study collected soil samples from 54 exposed slip scarp horizons for laboratory analysis of soil mechanical properties. Field measurements of slip and slope angles, length, width and depth to determine that 23,212m³ of sediment was volume lost, from the 54 landslides. The field and lab measurements were used to generate a coherent understanding of landsliding at Waimarama. Laboratory analysis for liquid limits water content showed a high of 88.5% to a low of 18.8% and plastic limit water content had a high of 51% in the A horizon (organics) and low of 16.1%. Specific gravity also indicated a high reading 1.74 g/cm³ with a low of 1.16 g/cm³. The A horizon was able to tolerate high levels of water content in most tests, while the B horizon was capable of coping with some increase in water content. The C horizon was only able to handle low volumes of water, and was the main initiator of regolith collapse. The laboratory results indicated high saturation levels within the horizons of weak lithology of marine regolith that over caps impervious marine bedrock. The main cause for hillslope collapse and exposure of multiple translational and debris flow landslides was extreme saturation. However, towards the height of the rainfall event a 4.5 magnitude earthquake was recorded with unknown collateral consequences. Most slip locations were found in the aspects of east, south-east, west, and north-west, and on slope angles 15 -25°. The study confirmed previous surveys that regolith depth 80-100cm on impervious sandstone, siltstone/mudstone, when saturated over lengthy wet spells or from extreme precipitation, will collapse. In addition to the physical geographic study a survey was included to record individual and family accounts of the weather phenomenon. A questionnaire was prepared with specific questions that required yes or no answers. These questions dealt with loss of buildings, loss of land, animals, financial loss and recovery, economic loss, insurance and mitigation plans. The most affected were farmers and the next affected were householders while the holiday park was the worst affected of small businesses. Insurance was a significant help in most recoveries. Land rehabilitation was mitigated with new plantings and some aerial sowing, otherwise many slips were left to revegetate naturally. Economic and financial loss was severe for most farmers, due to pasture loss and animal relocation. Extreme rainfall causes slips that affect humans, but they can be mitigated. The Waimarama event is one of many events that can happen countrywide, the results can be a disastrous loss of personal, economic and financial assets, loss of infrastructure, including roading, bridges and communication. These are factors that many people and communities only realise when it happens to them. Mitigation against such events might include adequate insurance and knowledge of what to do, and where to go should an event happen unexpectedly and without warning.</p>


Sign in / Sign up

Export Citation Format

Share Document