Methane Pressure Cycling Process with Horizontal Wells for Thin Heavy Oil Reservoirs

Author(s):  
Mingzhe Dong ◽  
Sam Huang ◽  
Keith Hutchence
2013 ◽  
Vol 16 (01) ◽  
pp. 60-71 ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

Summary Techniques have been developed to experimentally and numerically evaluate performance of water-alternating-CO2 processes in thin heavy-oil reservoirs for pressure maintenance and improving oil recovery. Experimentally, a 3D physical model consisting of three horizontal wells and five vertical wells is used to evaluate the performance of water-alternating-CO2 processes. Two well configurations have been designed to examine their effects on heavy-oil recovery. The corresponding initial oil saturation, oil-production rate, water cut, oil recovery, and residual-oil-saturation (ROS) distribution are examined under various operating conditions. Subsequently, numerical simulation is performed to match the experimental measurements and optimize the operating parameters (e.g., slug size and water/CO2 ratio). The incremental oil recoveries of 12.4 and 8.9% through three water-alternating-CO2 cycles are experimentally achieved for the aforementioned two well configurations, respectively. The excellent agreement between the measured and simulated cumulative oil production indicates that the displacement mechanisms governing water-alternating-CO2 processes have been numerically simulated and matched. It has been shown that water-alternating-CO2 processes implemented with horizontal wells can be optimized to significantly improve performance of pressure maintenance and oil recovery in thin heavy-oil reservoirs. Although well configuration imposes a dominant impact on oil recovery, the water-alternating-gas (WAG) ratios of 0.75 and 1.00 are found to be the optimum values for Scenarios 1 and 2, respectively.


2006 ◽  
Vol 9 (02) ◽  
pp. 154-164 ◽  
Author(s):  
Mingzhe Dong ◽  
S.-S. Sam Huang ◽  
Keith Hutchence

Summary The methane pressure-cycling (MPC) process is an enhanced-oil-recovery (EOR) scheme intended for application in some heavy-oil reservoirs after termination of either primary or waterflood production. The essence of the process is the restoration of the solution-gas-drive mechanism. The restoration is accomplished by reinjecting an appropriate amount of solution gas (mainly methane) and then repressuring the gas back into solution by injecting water until approximate original reservoir pressure is reached. This, aside from the replacement of produced oil by water, recreates the primary-production conditions. This novel recovery technique is being developed to target the considerable portion of heavy-oil resources located in thin reservoirs. Primary and secondary methods have managed to recover at best 10% of the initial oil in place (IOIP). Heat losses to overburden and underburden or bottomwater zones make thermal methods unsuitable for thin reservoirs. Sandpack-flood tests in 30.5-cm (length) × 5.0-cm (diameter) sandpacks were carried out for oils with a range of dead-oil viscosities from 1700 to 5400 mPa.s. The results showed that the pressure-cycling process could create a favorable condition for recharged gas to contact the remaining oil in reservoirs. This restores the situation whereby substantial amounts of gas are in solution for further "primary" production. The effects on the efficiency of the MPC process of cycle termination strategy, oil viscosity, and mobile-water saturation were investigated. Simulations were conducted to investigate the MPC process in three heavy-oil reservoirs in Saskatchewan, Canada. The effects on the process of infill wells, oil viscosity, gas-injection rate, and the presence of wormholes in reservoirs were studied. Introduction Heavy oil in thick-pay reservoirs (i.e., >10 m) is commonly produced with thermal-recovery methods. These methods (steam injection and its variants) are generally not suitable for thin reservoirs because of heat losses to overburden and underburden or bottomwater zones (Fairfield and White 1982; Dyer et al. 1994). The world's large untapped oil resource remaining after recovery by conventional technology offers potential for exploitation by a suitably developed tertiary-recovery technique. For example, Saskatchewan accounts for 62% of Canada's total heavy-oil resources (Bowers and Drummond 1997), including 1.7 billion m3 of proved reserves and 3.7 billion m3 of probable reserves (Saskatchewan Energy and Mines 1998). Of the province's proven initial heavy oil in place, 97% is contained in reservoirs where the pay zone is less than 10 m, and 55% in reservoirs with a pay zone less than 5 m thick (Huang et al. 1987; Srivastava et al. 1993). Primary and secondary methods combined recover, on average, only about 7% of the proven IOIP (Saskatchewan Energy and Mines 1998). The incentive is strong for the development of appropriate EOR techniques that will maximize the recovery potential of and profitability from these thin heavy-oil reservoirs. Extensive literature is available on CO2, flue gas, and produced-gas injection for heavy-oil recovery, including slug displacement, water alternating gas (WAG), and cyclic (huff ‘n’ puff) processes (Huang et al. 1987; Srivastava et al. 1993, 1994, 1999; Srivastava and Huang 1997; Ma and Youngren 1994; Issever et al. 1993; Olenick et al. 1992). A comparative study of the oil-recovery behavior for a 14.1°API heavy oil with different injection gases (CO2, flue gas, and produced gas) showed that CO2 was the best-suited gas for EOR of heavy oils (Srivastava et al. 1999). Cyclic CO2 injection for heavy-oil recovery was tested in the field, and field case histories indicated that oil production was enhanced (Olenick et al. 1992). However, natural CO2 sources are not available to most oil reservoirs. The cost of CO2 capture from flue gas and other sources may range from U.S. $25 to $70/ton (Padamsey and Railton 1993). Produced gas is available in large quantities at a much lower cost. With this consideration, produced gas can be an economically effective agent for heavy-oil recovery by the cyclic-injection process.


Sign in / Sign up

Export Citation Format

Share Document