scholarly journals Minimally invasive versus conventional fixation of tracer in robot-assisted pedicle screw insertion surgery: a randomized control trial

2019 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.

2019 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


2020 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


2020 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


2020 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


2022 ◽  
Vol 52 (1) ◽  
pp. E11

OBJECTIVE The application of robots in the field of pedicle screw placement has achieved great success. However, decompressive laminectomy, a step that is just as critical as pedicle screw placement, does not have a mature robot-assisted system. To address this lack, the authors designed a collaborative spine robot system to assist with laminectomy. In this study, they aimed to investigate the reliability of this novel collaborative spinal robot system and compare it with manual laminectomy (ML). METHODS Thirty in vitro porcine lumbar vertebral specimens were obtained as experimental bone specimens. Robot-assisted laminectomy (RAL) was performed on the left side of the lamina (n = 30) and ML was performed on the right side (n = 30). The time required for laminectomy on one side, whether the lamina was penetrated, and the remaining thickness of the lamina were compared between the two groups. RESULTS The time required for laminectomy on one side was longer in the RAL group than in the ML group (median 326 seconds [IQR 133 seconds] vs 108.5 seconds [IQR 43 seconds], p < 0.001). In the RAL group, complete lamina penetration occurred twice (6.7%), while in the ML group, it occurred 9 times (30%); the difference was statistically significant (p = 0.045). There was no statistically significant difference in the remaining lamina thickness between the two groups (median 1.035 mm [IQR 0.419 mm] vs 1.084 mm [IQR 0.383 mm], p = 0.842). CONCLUSIONS The results of this study confirm the safety of this novel spinal robot system for laminectomy. However, its efficiency requires further improvement.


2021 ◽  
Author(s):  
Shangju Gao ◽  
Jingchao Wei ◽  
Wenyi Li ◽  
Long Zhang ◽  
Can Cao ◽  
...  

Abstract Background: Robot-assisted pedicle screw placement is usually performed under general anaesthesia to keep the body still. The aim of this study was to compare the accuracy of the robot-assisted technique under regional anaesthesia with conventional fluoroscopy-guided percutaneous pedicle screw placement under general anaesthesia in minimally invasive lumbar fusion surgery.Methods: Patients who underwent robot-assisted percutaneous endoscopic lumbar interbody fusion (PELIF) or fluoroscopy-guided minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) from December 2017 to February 2020 in a single centre were included. Based on the method of percutaneous pedicle screw placement used, patients were divided into the robot-assisted under regional anaesthesia (group RE-RO) and fluoroscopy-guided under general anaesthesia (group GE-FLU) groups. The primary outcome measures were screw accuracy and the incidence of facet joint violation (FJV). Secondary outcome measures included X-ray exposure and intraoperative adverse events.Results: Eighteen patients were included in group RE-RO, and 23 patients were included in group GE-FLU. The percentages of clinically acceptable screws (Gertzbein and Robbins grades A and B) were 94.4% and 91.5%, respectively. There was no significant difference in the percentages of clinically acceptable screws (p=0.44) or overall Gertzbein and Robbins screw accuracy grades (p=0.35). Only the top screws were included in the analysis of FJVs. The percentages of FJV (Babu grades 1, 2 and 3) were 5.6% and 28.3%, respectively. This difference was statistically significant (p=0.01). Overall, the FJV grades in group RE-RO were significantly better than those in group GE-FLU (p=0.009). The mean fluoroscopy time for each screw in group RE-RO was significantly shorter than that in group GE-FLU (group RE-RO, 5.4±1.9 seconds, group GE-FLU, 6.8±2.0 seconds; P=0.03). The intraoperative adverse events included 1 case of registration failure and 1 case of guide-wire dislodgment in group RE-RO as well as 2 cases of screw misplacement in group GE-FLU. No complications related to anaesthesia were observed.Conclusion: Robot-assisted pedicle screw placement under regional anaesthesia can be performed effectively and safely. The accuracy is comparable to the conventional technique. Moreover, this technique has the advantage of fewer FJVs and a lower radiation time.


2021 ◽  
Author(s):  
JiaBin Liu ◽  
JunLong Wu ◽  
Rui Zuo ◽  
ChangQing Li ◽  
Chao Zhang ◽  
...  

Abstract Background Although previous studies have suggested that navigation can improve the accuracy of pedicle screw placement, there are still few studies comparing navigation-assisted transforaminal lumbar interbody fusion (TLIF) and navigation-assisted minimally-invasive TLIF (MIS-TLIF). The pedicle screw insertion entry point of navigation-assisted MIS-TLIF may be deflected from the planned entry point due to uneven bone-surface, which may result in misplacement. The purpose of this study was to explore the pedicle screws accuracy and clinical consequences of MIS-TLIF and TLIF both under O-arm navigation to determine which surgical method is better.MethodsA retrospective study of 54 patients who underwent single-segment navigation-assisted MIS-TLIF (NM-TLIF) or navigation-assisted TLIF (N-TLIF) was conducted. In addition to the patient's demographic characteristics, intraoperative indicators and complications, the ODI and VAS scores were recorded and analyzed preoperatively, at 1, 6, 12 months and at the final follow-up postoperatively. The clinical accuracy and absolute accuracy of pedicle screw placement was assessed by postoperative CT. Multifidus muscle injury were evaluated by T2-weighted MRI.ResultsCompared with N-TLIF, NM-TLIF was more advantageous in the incision length, intraoperative blood loss, drainage volume, time before ambulation, length of hospital stays, blood transfusion rate and analgesia rate (p<0.05). The ODI and VAS for low back pain scores were better than those of N-TLIF at 1 month and 6 months after surgery (p<0.05). There was no significant difference in the screw clinical qualitative accuracy (97.3% vs. 96.2%, p>0.05). The absolute quantitative accuracy results show that the axial translational error, sagittal translational error and sagittal angle error of NM-TLIF group are significantly greater than that in N-TLIF group (P<0.05). The mean T2-weighted signal intensity of multifidus muscle in the NM-TLIF group was significantly lower than that in the N-TLIF group (P<0.05)ConclusionsCompared with N-TLIF, NM-TLIF has more minimally invasive advantages, it does not yield a lower accuracy of screw placement and can achieve better symptom relief in the middle stage of postoperative recovery. However,more attention on real-time adjustment should be paid to pedicle insertion in NM-TLIF, rather than just following the entry point and trajectory of the intraoperative plan.


Sign in / Sign up

Export Citation Format

Share Document