scholarly journals Biomechanical Evaluation of strategies for Adjacent Segment Disease after Lateral lumbar interbody fusion: is extension of pedicle screw necessary?

2019 ◽  
Author(s):  
Ziyang Liang ◽  
Jianchao Cui ◽  
Jiarui Zhang ◽  
Jiahui He ◽  
Jingjing Tang ◽  
...  

Abstract Background: Adjacent segment disease (ASD) is a well-known complication after interbody fusion. Pedicle screw-rod revision possessed sufficient strength and rigidity. However, is a surgical segment with rigid fixation necessary for ASD reoperation? This study aimed to investigate the biomechanical effect on LLIF with different instrumentation for ASD treatment.Methods: A validated L2~5 finite element (FE) model was modified to simulate. ASD was considered the level cranial to the upper-instrumented segment(L3/4). Bonegraft fusion in LLIF with bilateral pedicle screw fixation (BPS) has occurred at the L4/5. The ASD segment for each group was underwent a) LLIF + posterior extension of BPS, b) PLIF + posterior extension of BPS, c) LLIF + lateral screw, d) Stand-alone LLIF. L3/4 Range of motion (ROM), interbody cage stress and strain, screw-boneinterface stress, cage-endplate interface stress, and L2/3 nucleus pulposus of intradiscal pressure (NP-IDP) analysis were calculated for the comparisons among fourmodels.Results: All reconstructive models displayed decreased motion at L3/4. In each loading condition, difference was not significant between model a and b, which providedthe maximum ROM reduction (73.8% to 97.7%, 68.3% to 98.4%, respectively). Model c also provided a significant ROM reduction (64.9% to 77.5%). Model d provided a minimal restriction of ROM (18.3% to 90.1%), which exceeded that of model a by 13.1 times in flexion-extension, 10.3 times in lateral bending and 4.8 times in rotation. Model b generated greater cage stress than other models, particularly in flexion. The maximum displacement of the cage and the peak stress of cage-endplate interface were found to be the highest in the model d in all loading conditions. For the screw bone interface, the stress was significantly greater in lateral instrumentation than that of posterior instrumentation.Conclusions: Stand-alone LLIF is likely to have limited stability, particularly in lateral bending and axial rotation. Posterior extension of BPS can provide the reliablystability and excellently protective effect on instrumentation and endplate. However, LLIF with in situ screw may be an alternative for ASD reoperation.

2020 ◽  
Author(s):  
Ziyang Liang ◽  
Jianchao Cui ◽  
Jiarui Zhang ◽  
Jiahui He ◽  
Jingjing Tang ◽  
...  

Abstract Background: Adjacent segment disease (ASD) is a well-known complication after interbody fusion. Pedicle screw-rod revision possesses sufficient strength and rigidity. However, is a surgical segment with rigid fixation necessary for ASD reoperation? This study aimed to investigate the biomechanical effect of different instrumentation on lateral lumbar interbody fusion (LLIF) for ASD treatment. Methods: A validated L2~5 finite element (FE) model was modified for simulation. ASD was considered the level cranial to the upper-instrumented segment (L3/4). Bone graft fusion in LLIF with bilateral pedicle screw (BPS) fixation occurred at L4/5. The ASD segment for each group underwent a) LLIF + posterior extension of BPS, b) PLIF + posterior extension of BPS, c) LLIF + lateral screw, and d) stand-alone LLIF. The L3/4 range of motion (ROM), interbody cage stress and strain, screw-bone interface stress, cage-endplate interface stress, and L2/3 nucleus pulposus of intradiscal pressure (NP-IDP) analysis were calculated for comparisons among the four models. Results: All reconstructive models displayed decreased motion at L3/4. Under each loading condition, the difference was not significant between models a and b, which provided the maximum ROM reduction (73.8% to 97.7% and 68.3% to 98.4%, respectively). Model c also provided a significant ROM reduction (64.9% to 77.5%). Model d provided a minimal restriction of the ROM (18.3% to 90.1%), which exceeded that of model a by 13.1 times for flexion-extension, 10.3 times for lateral bending and 4.8 times for rotation. Model b generated greater cage stress than other models, particularly for flexion. The maximum displacement of the cage and the peak stress of the cage-endplate interface were found to be the highest in model d under all loading conditions. For the screw-bone interface, the stress was much greater with lateral instrumentation than with posterior instrumentation. Conclusions: Stand-alone LLIF is likely to have limited stability, particularly for lateral bending and axial rotation. Posterior extension of BPS can provide reliable stability and excellent protective effects on instrumentation and endplates. However, LLIF with the use of an in situ screw may be an alternative for ASD reoperation.


2020 ◽  
Author(s):  
Ziyang Liang ◽  
Jianchao Cui ◽  
Jiarui Zhang ◽  
Jiahui He ◽  
Jingjing Tang ◽  
...  

Abstract Background: Adjacent segment disease (ASD) is a well-known complication after interbody fusion. Pedicle screw-rod revision possesses sufficient strength and rigidity. However, is a surgical segment with rigid fixation necessary for ASD reoperation? This study aimed to investigate the biomechanical effect of different instrumentation on lateral lumbar interbody fusion (LLIF) for ASD treatment. Methods: A validated L2~5 finite element (FE) model was modified for simulation. ASD was considered the level cranial to the upper-instrumented segment (L3/4). Bone graft fusion in LLIF with bilateral pedicle screw (BPS) fixation occurred at L4/5. The ASD segment for each group underwent a) LLIF + posterior extension of BPS, b) PLIF + posterior extension of BPS, c) LLIF + lateral screw, and d) stand-alone LLIF. The L3/4 range of motion (ROM), interbody cage stress and strain, screw-bone interface stress, cage-endplate interface stress, and L2/3 nucleus pulposus of intradiscal pressure (NP-IDP) analysis were calculated for comparisons among the four models. Results: All reconstructive models displayed decreased motion at L3/4. Under each loading condition, the difference was not significant between models a and b, which provided the maximum ROM reduction (73.8% to 97.7% and 68.3% to 98.4%, respectively). Model c also provided a significant ROM reduction (64.9% to 77.5%). Model d provided a minimal restriction of the ROM (18.3% to 90.1%), which exceeded that of model a by 13.1 times for flexion-extension, 10.3 times for lateral bending and 4.8 times for rotation. Model b generated greater cage stress than other models, particularly for flexion. The maximum displacement of the cage and the peak stress of the cage-endplate interface were found to be the highest in model d under all loading conditions. For the screw-bone interface, the stress was much greater with lateral instrumentation than with posterior instrumentation. Conclusions: Stand-alone LLIF is likely to have limited stability, particularly for lateral bending and axial rotation. Posterior extension of BPS can provide reliable stability and excellent protective effects on instrumentation and endplates. However, LLIF with the use of an in situ screw may be an alternative for ASD reoperation.


2021 ◽  
pp. 1-7
Author(s):  
Piyanat Wangsawatwong ◽  
Anna G. U. Sawa ◽  
Bernardo de Andrada Pereira ◽  
Jennifer N. Lehrman ◽  
Luke K. O’Neill ◽  
...  

OBJECTIVE Cortical screw–rod (CSR) fixation has emerged as an alternative to the traditional pedicle screw–rod (PSR) fixation for posterior lumbar fixation. Previous studies have concluded that CSR provides the same stability in cadaveric specimens as PSR and is comparable in clinical outcomes. However, recent clinical studies reported a lower incidence of radiographic and symptomatic adjacent-segment degeneration with CSR. No biomechanical study to date has focused on how the adjacent-segment mobility of these two constructs compares. This study aimed to investigate adjacent-segment mobility of CSR and PSR fixation, with and without interbody support (lateral lumbar interbody fusion [LLIF] or transforaminal lumbar interbody fusion [TLIF]). METHODS A retroactive analysis was done using normalized range of motion (ROM) data at levels adjacent to single-level (L3–4) bilateral screw–rod fixation using pedicle or cortical screws, with and without LLIF or TLIF. Intact and instrumented specimens (n = 28, all L2–5) were tested using pure moment loads (7.5 Nm) in flexion, extension, lateral bending, and axial rotation. Adjacent-segment ROM data were normalized to intact ROM data. Statistical comparisons of adjacent-segment normalized ROM between two of the groups (PSR followed by PSR+TLIF [n = 7] and CSR followed by CSR+TLIF [n = 7]) were performed using 2-way ANOVA with replication. Statistical comparisons among four of the groups (PSR+TLIF [n = 7], PSR+LLIF [n = 7], CSR+TLIF [n = 7], and CSR+LLIF [n = 7]) were made using 2-way ANOVA without replication. Statistical significance was set at p < 0.05. RESULTS Proximal adjacent-segment normalized ROM was significantly larger with PSR than CSR during flexion-extension regardless of TLIF (p = 0.02), or with either TLIF or LLIF (p = 0.04). During lateral bending with TLIF, the distal adjacent-segment normalized ROM was significantly larger with PSR than CSR (p < 0.001). Moreover, regardless of the types of screw-rod fixations (CSR or PSR), TLIF had a significantly larger normalized ROM than LLIF in all directions at both proximal and distal adjacent segments (p ≤ 0.04). CONCLUSIONS The use of PSR versus CSR during single-level lumbar fusion can significantly affect mobility at the adjacent segment, regardless of the presence of TLIF or with either TLIF or LLIF. Moreover, the type of interbody support also had a significant effect on adjacent-segment mobility.


Spine ◽  
2010 ◽  
Vol 35 (6) ◽  
pp. 625-634 ◽  
Author(s):  
Kyeong Hwan Kim ◽  
Sang-Ho Lee ◽  
Chan Shik Shim ◽  
Dong Yeob Lee ◽  
Hyeon Seon Park ◽  
...  

2007 ◽  
Vol 6 (3) ◽  
pp. 267-271 ◽  
Author(s):  
Tann A. Nichols ◽  
Brenda K. Yantzer ◽  
Suzanne Alameda ◽  
Wesley M. Johnson ◽  
Bernard H. Guiot

Object Posterior pedicle screw (PS) instrumentation is often used to augment anterior lumbar interbody fusion (ALIF) but at the cost of an increase in the morbidity rate due to the second approach and screw placement. If anterior plates were found to be biomechanically equivalent to PS fixation (PSF) after ALIF, then this second approach could be avoided without decreasing vertebral stability. Methods Eight cadaveric L5–S1 spinal segments were tested under four conditions: intact, following anterior discectomy and interbody spacer placement, after placement of an anterior plate, and following PSF. The elastic zone and stiffness were calculated for axial compression, flexion/extension, lateral bending, and torsion. Neither anterior plate stabilization nor PSF showed significant intergroup differences in stiffness or the elastic zone. Both exhibited greater stiffness in flexion than the intact specimens (p < 0.001). Pedicle screw fixation was associated with a decreased elastic zone in lateral bending compared with the intact specimen (p < 0.04). Conclusions Anterior plate fixation is biomechanically similar to PSF following ALIF. Surgeons may wish to use anterior plates in place of PSs to avoid the need for a posterior procedure. This may lead to a decrease in operative morbidity and improved overall outcomes.


Neurosurgery ◽  
2006 ◽  
Vol 58 (3) ◽  
pp. 522-527 ◽  
Author(s):  
Aftab Karim ◽  
Debi Mukherjee ◽  
Murali Ankem ◽  
Jorge Gonzalez-Cruz ◽  
Donald Smith ◽  
...  

Abstract OBJECTIVE: Anterior lumbar interbody fusion (ALIF) has proven effective for indications including discogenic back pain, nonunion, and instability. Current practice involves posterior pedicle screw augmentation of the ALIF procedure (ALIF-PPS). This approach requires intraoperative repositioning of the patient for percutaneous posterior pedicle screw placement. We have developed a novel technique in which the ALIF procedure is augmented with anterior pedicle screws (APS; ALIF-APS). In this study, we introduce this new technique and compare the biomechanical stability of the novel ALIF-APS with the current standard ALIF-PPS. METHODS: The technique was demonstrated in a cadaveric L4–S1 specimen using neuronavigation and fluoroscopy. Plain radiographs and computed tomographic scans of the construct were obtained. Twelve cadaveric spines (7 men and 5 women) from donors with an average age of 81 years (range, 64–93 yr) were then harvested from L4–S1. Six specimens were dedicated to ALIF-APS constructs, and the remaining six were dedicated to ALIF-PPS constructs. The specimens were then studied at L5–S1 in the following steps: 1) intact form, 2) after anterior discectomy, 3) after implantation of titanium cages (ALIF), and 4) after APS or PPS fixation in conjunction with the ALIF. Measurements were obtained in axial rotation and left and right lateral bending flexion-extension. Data were normalized by calculating the ratio of the stiffness of the instrumented to the intact spine. Statistical analyses were then performed on the data. RESULTS: Radiographs and computed tomographic scans of the construct showed accurate placement of the APS at L5 and S1. The normalized data showed that ALIF-APS and ALIF-PPS had approximately equal stability in axial rotation (1.17 ± 0.43 versus 0.85 ± 0.14), lateral bending (0.93 ± 0.22 versus 0.95 ± 0.16), and flexion- extension (0.77 ± 0.13 versus 0.84 ± 0.2). Paired t test analysis did not show a significant difference between the biomechanical stiffness of ALIF-APS and ALIF-PPS in axial rotation, lateral bending, and flexion-extension. CONCLUSION: We demonstrate a new technique in a cadaveric specimen whereby the ALIF procedure is augmented with APS fixation using neuronavigation and fluoroscopy. Biomechanical evaluation of the constructs suggests that the ALIF-APS has comparable stability with ALIF-PPS. APS augmentation of ALIF has potential advantages over the current standard ALIF-PPS because it can 1) eliminate the patient repositioning step, 2) minimize the total number of incisions and the total operative time, and 3) protect against dislocation of the ALIF interbody graft or cage. Work is in progress to develop a low-profile system for the novel APS constructs described here.


Neurosurgery ◽  
2013 ◽  
Vol 73 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Bruno C.R. Lazaro ◽  
Phillip M. Reyes ◽  
Anna G.U.S. Newcomb ◽  
Ali S. Yaqoobi ◽  
Leonardo B.C. Brasiliense ◽  
...  

Abstract BACKGROUND: Transitioning from rigid to flexible hardware at the distal rostral or caudal lumbar or lumbosacral level hypothetically maintains motion at the transition level and protects the transition level and intact adjacent levels from stresses caused by fusion. OBJECTIVE: To biomechanically compare transitional and rigid constructs with uninstrumented specimens in vitro. METHODS: Human cadaveric L2-S1 segments were tested (1) intact, (2) after L5-S1 rigid pedicle screw-rod fixation, (3) after L4-S1 rigid pedicle screw-rod fixation, and (4) after hybrid fixation rigidly spanning L5-S1 and dynamically spanning L4-L5. Pure moments (maximum 7.5 Nm) induced flexion, extension, lateral bending, and axial rotation while motion was recorded optoelectronically. Additionally, specimens were studied in flexion/extension with a 400-N compressive follower load. Strain gauges on laminae were used to extract facet loads. RESULTS: The range of motion at the transition segment (L4-L5) for the hybrid construct was significantly less than for the intact condition and significantly greater than for the rigid 2-level construct during lateral bending and axial rotation but not during flexion or extension. Sagittal axis of rotation at L4-L5 shifted significantly after rigid 2-level or hybrid fixation (P &lt; .003) but shifted significantly farther posterior and rostral with rigid fixation (P &lt; .02). Instrumentation altered L4-L5 facet load at more than the L3-L4 facet load. CONCLUSION: The effect of the dynamic rod segment on the kinematics of the transition level was less pronounced than that of a fully rigid construct in vitro with this particular rod system. This experimental model detected no biomechanical alterations at adjacent intact levels with hybrid or rigid systems.


2009 ◽  
Vol 65 (suppl_6) ◽  
pp. ons167-ons172 ◽  
Author(s):  
Matthew J. McGirt ◽  
Edward G. Sutter ◽  
Risheng Xu ◽  
Daniel M. Sciubba ◽  
Jean-Paul Wolinsky ◽  
...  

Abstract Objective: The first in vitro biomechanical investigation comparing the immediate and postcyclical rigidities of thoracic translaminar versus pedicle screws in posterior constructs crossing the cervicothoracic junction (CTJ). Methods: Ten human cadaveric spines underwent C4–C6 lateral mass screw and T1–T2 translaminar (n = 5) versus pedicle (n = 5) screw fixation. Spines were then potted in polymethylmethacrylate bone cement and placed on a materials testing machine. Rotation about the axis of bending was measured using passive retroreflective markers and infrared motion capture cameras. The motion of C6 relative to T2 in flexion-extension and lateral bending was assessed uninstrumented, immediately after instrumentation, and after 40,000 cycles of 4 N•m flexion-extension and lateral bending moments at 1 Hz. The effect of instrumentation and cyclical loading on rotational motion across the CTJ was analyzed for significance. Results: Compared with preinstrumented spines, pedicle and translaminar screw constructs significantly (P &lt; 0.001) decreased motion during flexion-extension and lateral bending. After cyclical loading, rotational motion at the CTJ was significantly increased (P &lt; 0.05) during flexion-extension and lateral bending in both groups. With flexion-extension, the mean rotational motion across the CTJ was similar in the translaminar and pedicle constructs immediately after fixation, but slightly greater (P = 0.03) after cyclical loading in the translaminar versus the pedicle screw constructs (0.39 degrees versus 0.26 degrees). Nevertheless, after cyclical loading, the mean angular motion across the CTJ remained less than one half of a degree in both groups. With lateral bending, the mean rotational motion was similar in both translaminar and pedicle screw constructs. Conclusion: Both upper thoracic translaminar and pedicle screws allow for rigid fixation at the CTJ. Although translaminar screw constructs demonstrated one eighth of a degree more motion at the CTJ after cycling, this minimal difference is likely less than would influence the biological fusion process. Upper thoracic translaminar screws are a biomechanically effective option to rigidly stabilize the CTJ.


2009 ◽  
Vol 9 (10) ◽  
pp. 4S-5S
Author(s):  
Kyeong Hwan Kim ◽  
Sang-Ho Lee ◽  
Ho-Yeon Lee ◽  
Chan Shik Shim ◽  
Dong Yeob Lee ◽  
...  

2010 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Marc Röllinghoff ◽  
Klaus Schlüter-Brust ◽  
Daniel Groos ◽  
Rolf Sobottke ◽  
Joern William-Patrick Michael ◽  
...  

In the treatment of multilevel degenerative disorders of the lumbar spine, spondylodesis plays a controversial role. Most patients can be treated conservatively with success. Multilevel lumbar fusion with instrumentation is associated with severe complications like failed back surgery syndrome, implant failure, and adjacent segment disease (ASD). This retrospective study examines the records of 70 elderly patients with degenerative changes or instability of the lumbar spine treated between 2002 and 2007 with spondylodesis of more than two segments. Sixty-four patients were included; 5 patients had died and one patient was lost to follow-up. We evaluated complications, clinical/radiological outcomes, and success of fusion. Flexion-extension and standing X-rays in two planes, MRI, and/or CT scans were obtained pre-operatively. Patients were assessed clinically using the Oswestry disability index (ODI) and a Visual Analogue Scale (VAS). Surgery performed was dorsolateral fusion (46.9%) or dorsal fusion with anterior lumbar interbody fusion (ALIF; 53.1%). Additional decompression was carried out in 37.5% of patients. Mean follow-up was 29.4±5.4 months. Average patient age was 64.7±4.3 years. Clinical outcomes were not satisfactory for all patients. VAS scores improved from 8.6±1.3 to 5.6±3.0 pre- to post-operatively, without statistical significance. ODI was also not significantly improved (56.1±22.3 pre- and 45.1±26.4 post-operatively). Successful fusion, defined as adequate bone mass with trabeculation at the facets and transverse processes or in the intervertebral segments, did not correlate with good clinical outcomes. Thirty-five of 64 patients (54%) showed signs of pedicle screw loosening, especially of the screws at S1. However, only 7 of these 35 (20%) complained of corresponding back pain. Revision surgery was required in 24 of 64 patients (38%). Of these, indications were adjacent segment disease (16 cases), pedicle screw loosening (7 cases), and infection (one case). At follow-up of 29.4 months, patients with radiographic ASD had worse ODI scores than patients without (54.7 vs. 36.6; P less than 0.001). Multilevel fusion for degenerative disease still has a high rate of complications, up to 50%. The problem of adjacent segment disease after fusion surgery has not yet been solved. This study underscores the need for strict indication guidelines to perform lumbar spine fusion of more than two levels.


Sign in / Sign up

Export Citation Format

Share Document