scholarly journals Tracing foot-and-mouth disease virus phylogeographical patterns and transmission dynamics.

2020 ◽  
Author(s):  
Manuel Jara ◽  
Alba Frias-De-Diego ◽  
Simon Dellicour ◽  
Guy Baele ◽  
Gustavo Machado

Abstract Background Foot-and-mouth disease virus (FMDV) has proven its potential to propagate across local and international borders on numerous occasions, but yet details about the directionality of the spread along with the role of the different host in transmission remain unexplored. To elucidate FMDV global spread characteristics, we studied the spatiotemporal phylodynamics of serotypes O, A, Asia1, SAT1, SAT2, and SAT3, based on more than 50 years of phylogenetic and epidemiological information. Results Our results revealed phylogeographic patterns, dispersal rates, and the role of host species in the dispersal and maintenance of virus circulation. Contrary to previous studies, our results showed that three serotypes were monophyletic (O, A, and Asia1), while all SATs serotypes did not evidence a defined common ancestor. Root state posterior probability (RSPP) analysis suggested Belgium as the country of origin for serotype O (RSPP= 0.27). India was the ancestral country for serotypes A (RSPP= 0.28), and Asia-1 (RSPP= 0.34), while Uganda appeared as the most likely origin country of all SAT serotypes (RSPP> 0.45). Furthermore, we identified the key centers of dispersal of the virus, being China, India and Uganda the most important ones. Bayes factor analysis revealed cattle as the major source of the virus for most of the serotypes (RSPP> 0.63), where the most important host-species transition route for serotypes O, A, and Asia1 was from cattle Bos taurus to swine Sus scrofa domesticus (BF>500), while, for SAT serotypes was from B. taurus to African buffalo Syncerus caffer. Conclusions This study provides significant insights into the spatiotemporal dynamics of the global circulation of FMDV serotypes, by characterizing the viral routes of spread at serotype level, especially uncovering the importance of host species for each serotype in the evolution and spread of FMDV which further improve future decisions for more efficient control and eradication.

2019 ◽  
Author(s):  
Manuel Jara ◽  
Alba Frias-De-Diego ◽  
Simon Dellicour ◽  
Guy Baele ◽  
Gustavo Machado

AbstractFoot-and-mouth disease virus (FMDV) has proven its potential to propagate across local and international borders on numerous occasions, but yet details about the directionality of the spread along with the role of the different host in transmission remain unexplored. To elucidate FMDV global spread characteristics, we studied the spatiotemporal phylodynamics of serotypes O, A, Asia1, SAT1, SAT2, and SAT3, based on more than 50 years of phylogenetic and epidemiological information. Our results revealed phylogeographic patterns, dispersal rates, and the role of host species in the dispersal and maintenance of virus circulation. Contrary to previous studies, our results showed that three serotypes were monophyletic (O, A, and Asia1), while all SATs serotypes did not evidence a defined common ancestor. Root state posterior probability (RSPP) analysis suggested Belgium as the country of origin for serotype O (RSPP=0.27). India was the ancestral country for serotypes A (RSPP= 0.28), and Asia-1 (RSPP= 0.34), while Uganda appeared as the most likely origin country of all SAT serotypes (RSPP> 0.45). Furthermore, we identified the key centers of dispersal of the virus, being China, India and Uganda the most important ones. Bayes factor analysis revealed cattle as the major source of the virus for most of the serotypes (RSPP> 0.63), where the most important host-species transition route for serotypes O, A, and Asia1 was from cattle Bos taurus to swine Sus scrofa domesticus (BF>500), while, for SAT serotypes was from B. taurus to African buffalo Syncerus caffer. This study provides significant insights into the spatiotemporal dynamics of the global circulation of FMDV serotypes, by characterizing the viral routes of spread at serotype level, especially uncovering the importance of host species for each serotype in the evolution and spread of FMDV which further improve future decisions for more efficient control and eradication.


2018 ◽  
Vol 6 (2) ◽  
pp. 23-26
Author(s):  
Mohammad Showkat Mahmud ◽  
Eusha Islam ◽  
Md. Giasuddin ◽  
Mohammed Abdus Samad ◽  
Md. Rezaul Karim ◽  
...  

2018 ◽  
Vol 30 (5) ◽  
pp. 699-707 ◽  
Author(s):  
Chungwon J. Chung ◽  
Alfonso Clavijo ◽  
Mangkey A. Bounpheng ◽  
Sabena Uddowla ◽  
Abu Sayed ◽  
...  

The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20–25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent–free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.


1994 ◽  
Vol 134 (10) ◽  
pp. 230-232 ◽  
Author(s):  
P. Dawe ◽  
F. Flanagan ◽  
R. Madekurozwa ◽  
K. Sorensen ◽  
E. Anderson ◽  
...  

Epidemics ◽  
2019 ◽  
Vol 29 ◽  
pp. 100355
Author(s):  
Patrick M Schnell ◽  
Yibo Shao ◽  
Laura W Pomeroy ◽  
Joseph H Tien ◽  
Mark Moritz ◽  
...  

2016 ◽  
Vol 90 (10) ◽  
pp. 5132-5140 ◽  
Author(s):  
Francois Maree ◽  
Lin-Mari de Klerk-Lorist ◽  
Simon Gubbins ◽  
Fuquan Zhang ◽  
Julian Seago ◽  
...  

ABSTRACTFoot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistencein vivowas not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity.IMPORTANCEFoot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.


2012 ◽  
Vol 93 (7) ◽  
pp. 1442-1448 ◽  
Author(s):  
Haiwei Wang ◽  
Mei Xue ◽  
Decheng Yang ◽  
Guohui Zhou ◽  
Donglai Wu ◽  
...  

Previously, we finely mapped the neutralizing epitopes recognized by foot-and-mouth disease virus (FMDV) type Asia1-specific mAb 3E11 and FMDV type O-specific mAb 8E8. In this study, we engineered recombinant FMDVs of the serotype Asia1 (rFMDVs) displaying the type O-neutralizing epitope recognized by the mAb 8E8. These epitope-inserted viruses were genetically stable and exhibited growth properties that were similar to those of their parental virus. Importantly, the recombinant virus rFMDV-C showed neutralization sensitivity to both FMDV type Asia1 and type O mAbs, as well as to polyclonal antibodies. These results indicated that this epitope-inserted virus has the potential to induce neutralizing antibodies against both FMDV type Asia1 and type O. Our results demonstrated that the G-H loop of FMDV type Asia1 effectively displays the protective neutralizing epitopes of other FMDV serotypes, making this an attractive approach for the design of novel FMDV vaccines.


2008 ◽  
Vol 82 (18) ◽  
pp. 9075-9085 ◽  
Author(s):  
Vivian O'Donnell ◽  
Michael LaRocco ◽  
Barry Baxt

ABSTRACT Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the αV subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O1Campos (O1C3056R) which can utilize both integrins and HS as receptors and a second variant (O1C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4°C, followed by a temperature shift to 37°C, type O1C3056R-KGE colocalized with caveolin-1, while O1C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O1C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O1C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.


2018 ◽  
Author(s):  
George Omondi ◽  
Francis Gakuya ◽  
Jonathan Arzt ◽  
Abraham Sangula ◽  
Ethan Hartwig ◽  
...  

Transmission of pathogens at wildlife-livestock interfaces poses a substantial challenge to the control of infectious diseases, including for foot-and-mouth disease virus (FMDV) in African buffalo and cattle. The extent to which buffalo play a role in the epidemiology of this virus in livestock populations remains unresolved in East Africa. Here, we show that FMDV occurs at high seroprevalence (~77%) in Kenyan buffalo. In addition, we recovered 80 FMDV VP1 sequences from buffalo, all of which were serotype SAT1 and SAT2, and seventeen FMDV VP1 sequences from cattle, which included serotypes A, O, SAT1 and SAT2. Notably, six individual buffalo were co-infected with both SAT1 and SAT2 serotypes. Our results suggest that transmission of FMDV between sympatric cattle and buffalo is rare. However, viruses from FMDV outbreaks in cattle elsewhere in Kenya were caused by viruses closely related to SAT1 and SAT2 viruses found in buffalo. We also show that the circulation of FMDV in buffalo is influenced by fine-scale geographic features, such as rivers, and that social segregation amongst sympatric herds may limit between-herd transmission. Our results significantly advance knowledge of the ecology and molecular epidemiology of FMDV at wildlife-livestock interfaces in Eastern Africa, and will help to inform the design of control and surveillance strategies for this disease in the region.


Sign in / Sign up

Export Citation Format

Share Document