scholarly journals Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-prodanediol

2020 ◽  
Author(s):  
Yingying Xu ◽  
Hao Meng ◽  
Jie Ren ◽  
An-Ping Zeng

Abstract Glycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N5,N10-methylene-tetrahydrofolate (5,10-CH2-THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH2-THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (Hint) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (Hred), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by Hint. Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro. This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.

2020 ◽  
Author(s):  
Yingying Xu ◽  
Hao Meng ◽  
Jie Ren ◽  
An-Ping Zeng

Abstract Glycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N5,N10-methylene-tetrahydrofolate (5,10-CH2-THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH2-THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (Hint) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (Hred), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by Hint. Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro. This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.


2020 ◽  
Author(s):  
Yingying Xu ◽  
Hao Meng ◽  
Jie Ren ◽  
An-Ping Zeng

Abstract Glycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO 2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N 5 ,N 10 -methylene-tetrahydrofolate (5,10-CH 2 -THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH 2 -THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (H int ) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (H red ), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by H int . Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro . This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Yingying Xu ◽  
Hao Meng ◽  
Jie Ren ◽  
An-Ping Zeng

AbstractGlycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N5,N10-methylene-tetrahydrofolate (5,10-CH2-THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH2-THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (Hint) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (Hred), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by Hint. Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro. This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.


2021 ◽  
Author(s):  
Yingying Xu ◽  
Yuchen Li ◽  
Han Zhang ◽  
Jinglei Nie ◽  
Jie Ren ◽  
...  

H-protein, one of the four component proteins (H, T, P and L) of glycine cleavage system (GCS), is generally considered a shuttle protein interacting with the other three GCS-proteins via a lipoyl swinging arm. We report that without P-, T- and L-proteins, lipoylated H-protein (Hlip) enables GCS reactions in both glycine cleavage and synthesis directions in vitro. This apparent catalytic activity is closely related to the cavity on the H-protein surface where the lipoyl arm is attached. Heating or mutation of selected residues in the cavity destroys or reduces the stand-alone activity of Hlip, which can be restored by adding the other three GCS-proteins. Systematic study of the Hlip-catalyzed overall GCS reactions and the individual reaction steps provides a first step towards understanding the stand-alone function of Hlip. The results in this work provide some inspiration for further understanding the mechanism of the GCS and give some interesting implications on the evolution of the GCS.


1994 ◽  
Vol 302 (1) ◽  
pp. 223-228 ◽  
Author(s):  
F Rebeille ◽  
M Neuburger ◽  
R Douce

The aim of the present work was to further determine how the T-protein of the glycine-cleavage system and serine hydroxy-methyltransferase (SHMT), two folate-dependent enzymes from pea leaf mitochondria, interact through a common pool of tetrahydrofolate polyglutamates (H4PteGlun). It was observed that the binding affinity of tetrahydrofolate polyglutamates for these proteins continuously increased with increasing number of glutamates up to six residues. It was also established that, once bound to the proteins, tetrahydrofolate, a very O2-sensitive molecule, was protected from oxidative degradation. The dissociation constants (Kd) of H4PteGlu5, the most predominant form of polyglutamate in the mitochondria, were approximately 0.5 microM for both T-protein and SHMT, whereas the Kd values of CH2-H4PteGlu5 were higher, 2.7 and 7 microM respectively. In a matrix extract from pea leaf mitochondria, the maximal activity of the glycine-cleavage system was about 2.5 times higher than the maximal activity of SHMT. This resulted in a permanent disequilibrium of the SHMT-catalysed reaction which was therefore driven toward the production of serine and H4PteGlun, the thermodynamically unfavourable direction. Indeed, measurements of the steady-state ratio of CH2-H4PteGlun/H4PteGlun (n = 1 or n = 5) during the course of glycine oxidation demonstrated that the methylene form accounted for 65-80% of the folate pool. This indicates that, in our in vitro experiments, CH2-H4PteGlun with long polyglutamate chains accumulated in the bulk medium. This observation suggests that, in these in vitro experiments at least, there was no channelling of CH2-H4PteGlu5 between the T-protein and SHMT.


1997 ◽  
Vol 272 (32) ◽  
pp. 19880-19883 ◽  
Author(s):  
Kazuko Fujiwara ◽  
Kazuko Okamura-Ikeda ◽  
Lester Packer ◽  
Yutaro Motokawa

2018 ◽  
Vol 17 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Patricia E. López-Calcagno ◽  
Stuart Fisk ◽  
Kenny L. Brown ◽  
Simon E. Bull ◽  
Paul F. South ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document