h protein
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 15)

H-INDEX

38
(FIVE YEARS 0)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jingjian Dong ◽  
Yan Chen ◽  
Lili Shi ◽  
Bing Shen ◽  
Xianliang Sun ◽  
...  

Abstract Background Canine distemper virus (CDV) infection of ferrets, dogs, and giant pandas causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system. In this study, we tested a new candidate CDV vaccine-CDV nanoparticles-based on hemagglutinin protein. Methods The nanoparticles were generated from conformation-stabilized CDV hemagglutinin tetramers. Immune responses against CDV were evaluated in mice. Immunization was initiated 6 weeks after birth and boosted two times with 4-week intervals. The blood and mucosal samples were collected 2 weeks after each immunization. Results Vaccination with CDV nanoparticles elicited high levels of IgG antibody titers in mice (approximately sevenfold to eightfold higher than that obtained with soluble CDV H protein) and mucosal immune responses and developed increased CDV-specific neutralizing antibody. The mice that received nanoparticles showed significantly higher IFN-γ- and IL-4-secreting cell population in the spleen and lymph node compared with mice immunized with soluble H protein. The co-stimulatory molecular expression of CD80 and CD86 on the surface of DCs was also upregulated. Conclusion The results demonstrate that self-assembly into nanoparticles can increase the immunogenicity of vaccine antigens, and nanoparticles assembled from conformation-stabilized CDV H protein can serve as a new CDV vaccine.



2021 ◽  
Author(s):  
Ryuichi Takemoto ◽  
Tateki Suzuki ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi ◽  
Yuta Shirogane

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae , usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We have recently shown that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. Importance Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we have reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis -acting fusion triggering by host factors.



Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1199
Author(s):  
Santiago Rendon-Marin ◽  
Carolina Quintero-Gil ◽  
Diego Guerra ◽  
Carlos Muskus ◽  
Julian Ruiz-Saenz

Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein–protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Majeed Bakari-Soale ◽  
Nonso Josephat Ikenga ◽  
Marion Scheibe ◽  
Falk Butter ◽  
Nicola G. Jones ◽  
...  

AbstractThe biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.



2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Rodríguez-Martín ◽  
José Manuel Rojas ◽  
Francesca Macchi ◽  
Valentina Franceschi ◽  
Luca Russo ◽  
...  

The Morbillivirus peste des petits ruminants virus (PPRV) is the causal agent of a highly contagious disease that mostly affects sheep and goats and produces considerable losses in developing countries. Current PPRV control strategies rely on live-attenuated vaccines, which are not ideal, as they cannot differentiate infected from vaccinated animals (DIVA). Recombinant vector-based vaccines expressing viral subunits can provide an alternative to conventional vaccines, as they can be easily paired with DIVA diagnostic tools. In the present work, we used the bovine herpesvirus-4-based vector (BoHV-4-A) to deliver PPRV hemagglutinin H antigen (BoHV-4-A-PPRV-H-ΔTK). Vaccination with BoHV-4-A-PPRV-H-ΔTK protected sheep from virulent PPRV challenge and prevented virus shedding. Protection correlated with anti-PPRV IgGs, neutralizing antibodies and IFN-γ-producing cells induced by the vaccine. Detection of antibodies exclusively against H-PPRV in animal sera and not against other PPRV viral proteins such as F or N could serve as a DIVA diagnostic test when using BoHV-4-A-PPRV-H-ΔTK as vaccine. Our data indicate that BoHV-4-A-PPRV-H-ΔTK could be a promising new approach for PPRV eradication programs.



2021 ◽  
Author(s):  
Cyrille Mathieu ◽  
Tiago Nascimento Figueira ◽  
Amanda R Decker ◽  
Marion Ferren ◽  
Francesca Tiziana Bovier ◽  
...  

Measles virus (MeV) viral entry is mediated by a fusion complex comprised of a receptor-binding protein (hemagglutinin, H) and a fusion protein (F). The wild-type H/F complex requires interaction with specific proteinaceous receptors (CD150/SLAM and nectin-4) in order to be activated. In contrast, the H/F complexes isolated from viruses infecting the central nervous system (CNS) do not require a specific receptor. A single amino acid change in the F protein (L454W) was previously identified in two patients with lethal sequelae of MeV CNS infection, and the F bearing this mutation mediates fusion even without the H protein. We show here that viruses bearing the L454W fusion complex are less efficient than wt virus at targeting receptor-expressing cells and that this defect is associated with a decreased interaction between the H and the F proteins.



2021 ◽  
Author(s):  
Majeed Bakari-Soale ◽  
Nonso Josephat Ikenga ◽  
Marion Scheibe ◽  
Falk Butter ◽  
Nicola Gail Jones ◽  
...  

Abstract The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.



2021 ◽  
Author(s):  
Majeed Bakari-Soale ◽  
Nonso Josephat Ikenge ◽  
Marion Scheibe ◽  
Falk Butter ◽  
Nicola Gail Jones ◽  
...  

The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.



2021 ◽  
Vol 2 (37) ◽  
pp. 151-157
Author(s):  
Ilknur Karalezli ◽  
Ayse Gul Zamani ◽  
Yunus Emre Goger ◽  
Huseyin Osman Yilmaz ◽  
Giray Karalezli


2021 ◽  
Vol 22 (11) ◽  
pp. 5853
Author(s):  
Andrzej Wróbel ◽  
Łukasz Zapała ◽  
Tomasz Kluz ◽  
Artur Rogowski ◽  
Marcin Misiek ◽  
...  

The purpose of this study was to determine if asiatic acid may act efficiently in the model of cyclophosphamide (CYP)-induced cystitis in rats. We performed experiments after administration of CYP (single dose 200 mg/kg, intraperitoneally), asiatic acid (30 mg/kg/day for 14 consecutive days, by oral gavage), or CYP plus asiatic acid, during which conscious cystometry, measurements of urothelium thickness and bladder edema, as well as selected biomarkers analyses were conducted. In rats that received asiatic acid together with CYP, a drop in bladder basal pressure, detrusor overactivity index, non-voiding contraction amplitude, non-voiding contraction frequency, and the area under the pressure curve were observed, when compared to the CYP group. Furthermore, a significant increase in threshold pressure, voided volume, intercontraction interval, bladder compliance, and volume threshold to elicit NVC were found in that group accordingly. Administration of the asiatic acid successfully restored concentrations of biomarkers both in bladder urothelium (BDNF, CGRP, OCT-3, IL-1β, IL-6, NGF, nitrotyrosine, malondialdehyde, TNF-α, SV2A, SNAP23, SNAP25, PAC-1, ORM1, occludin, IGFBP-3, HB-EGF, T–H protein, Z01, and HPX) and detrusor muscle (Rho kinase and VAChT) in CYP-treated rats. Finally, asiatic acid significantly decreased urothelium thickness and bladder oedema. Asiatic acid proved to be a potent and effective drug in the rat model of CYP-induced cystitis.



Sign in / Sign up

Export Citation Format

Share Document