scholarly journals Tissue Segmentation from Whole-Slide Images Using Lightweight Neural Networks

Author(s):  
Steven Frank

Abstract Pathology slides of malignancies are segmented using lightweight convolutional neural networks (CNNs) that may be deployed on mobile devices. This is made possible by preprocessing candidate images to make CNN analysis tractable and also to exclude regions unlikely to be diagnostically relevant. In a training phase, labeled whole-slide histopathology images are first downsampled and decomposed into square tiles. Tiles corresponding to diseased regions are analyzed to determine boundary values of a visual criterion, image entropy. A lightweight CNN is then trained to distinguish tiles of diseased and non-diseased tissue, and if more than one disease type is present, to discriminate among these as well. A segmentation is generated by downsampling and tiling a candidate image, and retaining only those tiles with values of the visual criterion falling within the previously established extrema. The sifted tiles, which now exclude much of the non-diseased image content, are efficiently and accurately classified by the trained CNN. Tiles classified as diseased tissue ¾ or in the case of multiple possible subtypes, as the dominant subtype in the tile set ¾ are combined, either as a simple union or at a pixel level, to produce a segmentation mask or map. This approach was applied successfully to two very different datasets of large whole-slide images, one (PAIP2020) involving multiple subtypes of colorectal cancer and the other (CAMELYON16) single-type breast-cancer metastases. Scored using standard similarity metrics, the segmentations exhibited notably high recall, even when tiles were large relative to tumor features.

2020 ◽  
Author(s):  
Steven Frank

Abstract Pathology slides of malignancies are segmented using lightweight convolutional neural networks (CNNs) that may be deployed on mobile devices. This is made possible by preprocessing candidate images to make CNN analysis tractable and also to exclude regions unlikely to be diagnostically relevant. In a training phase, labeled whole-slide histopathology images are first downsampled and decomposed into square tiles. Tiles corresponding to diseased regions are analyzed to determine boundary values of a visual criterion, image entropy. A lightweight CNN is then trained to distinguish tiles of diseased and non-diseased tissue, and if more than one disease type is present, to discriminate among these as well. A segmentation is generated by downsampling and tiling a candidate image, and retaining only those tiles with values of the visual criterion falling within the previously established extrema. The sifted tiles, which now exclude much of the non-diseased image content, are efficiently and accurately classified by the trained CNN. Tiles classified as diseased tissue -- or in the case of multiple possible subtypes, as the dominant subtype in the tile set -- are combined, either as a simple union or at a pixel level, to produce a segmentation mask or map. This approach was applied successfully to two very different datasets of large whole-slide images, one (PAIP2020) involving multiple subtypes of colorectal cancer and the other (CAMELYON16) single-type breast-cancer metastases. Scored using standard similarity metrics, the segmentations exhibited notably high recall, even when tiles were large relative to tumor features. With segmentations that can be generated locally and broadcast widely, efficiencies in utilizing expert resources can be achieved.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8242 ◽  
Author(s):  
Péter Bándi ◽  
Maschenka Balkenhol ◽  
Bram van Ginneken ◽  
Jeroen van der Laak ◽  
Geert Litjens

Modern pathology diagnostics is being driven toward large scale digitization of microscopic tissue sections. A prerequisite for its safe implementation is the guarantee that all tissue present on a glass slide can also be found back in the digital image. Whole-slide scanners perform a tissue segmentation in a low resolution overview image to prevent inefficient high-resolution scanning of empty background areas. However, currently applied algorithms can fail in detecting all tissue regions. In this study, we developed convolutional neural networks to distinguish tissue from background. We collected 100 whole-slide images of 10 tissue samples—staining categories from five medical centers for development and testing. Additionally, eight more images of eight unfamiliar categories were collected for testing only. We compared our fully-convolutional neural networks to three traditional methods on a range of resolution levels using Dice score and sensitivity. We also tested whether a single neural network can perform equivalently to multiple networks, each specialized in a single resolution. Overall, our solutions outperformed the traditional methods on all the tested resolutions. The resolution-agnostic network achieved average Dice scores between 0.97 and 0.98 across the tested resolution levels, only 0.0069 less than the resolution-specific networks. Finally, its excellent generalization performance was demonstrated by achieving averages of 0.98 Dice score and 0.97 sensitivity on the eight unfamiliar images. A future study should test this network prospectively.


2009 ◽  
Vol 69 (05) ◽  
Author(s):  
EC Schest ◽  
H Cerwenka ◽  
A El-Shabrawi ◽  
H Bacher ◽  
HJ Mischinger

2019 ◽  
Author(s):  
K Horas ◽  
M Abraham ◽  
F Jakob ◽  
R Ebert ◽  
G Maier ◽  
...  

2019 ◽  
Author(s):  
Shahan Mamoor

Differential gene expression analysis of multiple datasets, in mice and in men revealed that transcripts of the olfactomedin-like family are differentially expressed in metastases, both in patients with breast cancer and in genetically engineered mouse models of breast cancer. The expression of olfactomedin-like genes was perturbed in metastases to the bone, brain and the lung, suggesting that these molecules function in the metastatic process rather than having tissue-specific associations with the site of dissemination. The olfactomedin-like family may play a role in the progression of breast cancer from frank tumor to colonization of distant organ sites.


Sign in / Sign up

Export Citation Format

Share Document