Model-Free Adaptive Nonlinear Control of the Absorption Refrigeration System

Author(s):  
Na Dong ◽  
Wenjin Lv ◽  
Shuo Zhu ◽  
Zhong-ke Gao ◽  
Celso Grebogi

Abstract Based on the model-free adaptive control (MFAC) theory, the temperature tracking control problem of single-effect LiBr/H 2 O absorption chiller is explored. Due to the complex nonlinearity and strong coupling characteristics of the absorption refrigeration system, model-free adaptive control strategy is designed for its temperature tracking control. Nevertheless, the traditional model-free adaptive control has a slow tracking speed and poor denoising ability. In order to improve its control effect, output error rate is added to the objective function and new control laws of model-free adaptive control with output error rate (MFAC-OER) have been derived through an exhaustive convergence and stability analysis. The input and output information of the absorption refrigeration system, namely the hot water pump frequency and frozen water outlet water temperature, are combined. The data model of the absorption refrigeration system is subsequently deduced using a compact format dynamic linearization method. Next, based on the single effect absorption chiller experimental platform in our laboratory, its sixth-order dynamic model is built. Finally, the effectiveness and practicability of the improved control strategy are validated by numerical simulations and experimental operating data from our laboratory as well as by the dynamical model of the absorption chiller.

Author(s):  
Alexander Bertino ◽  
Peiman Naseradinmousavi ◽  
Atul Kelkar

Abstract In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012069
Author(s):  
J Zheng ◽  
J Chiva ◽  
J Castro ◽  
Y Liu ◽  
A Oliva

Abstract LiBr/H2O as working pair in absorption chiller is widely used in the absorption refrigeration system, and the electrical conductivity is used as secondary properties as an empirical relation with temperature and concentration as a simple method to measure the concentration. In this paper, another working pair Carrol/H2O is chosen, more suitable for air-cooled cycles. Carrol contains ethylene glycol and LiBr with a mass ratio at 4.5:1 and has advantages of low risk of crystallization and reduce the LiBr charge. The working range for the LiBr/H2O solution is temperature 25-80°C, at concentration 50–64%, in term of Carrol/H2O system, the temperature range is 25-80°C, concentration range is 50%-75%. The electrical conductivity will be measured according to the working range and a typical used solution extracted from an absorption chiller prototype will also be measured to compare with the experimental result.


Author(s):  
Hugo Valença de Araújo ◽  
Luiz Henrique Parolin Massuchetto ◽  
Raiza Barcelos Corrêa do Nascimento ◽  
Stella Maia Rocha de Carvalho ◽  
José Vicente Hallak Dangelo

2018 ◽  
Vol 11 (No. 07) ◽  
pp. 363-368
Author(s):  
Guillermo Valencia Ochoa ◽  
Jorge Duarte Forero ◽  
Luis Obregon Quinones

Sign in / Sign up

Export Citation Format

Share Document