scholarly journals Selective role of the translin/trax RNase complex in hippocampal synaptic plasticity

2020 ◽  
Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

Abstract Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, translin knockout (KO) mice, which lack translin/trax, exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome (fragile X mental retardation protein-FMRP-KO mice). Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic protein kinase A (PKA) activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression (mGluR-LTD), a hallmark of the FMRP KO mice. . On the contrary, translin KO mice exhibited deficits in N-methyl-D-aspartate receptor (NMDAR) dependent LTD, a phenotype not observed in the FMRP knockouts. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling and suggest that translin/trax and FMRP play distinct roles in hippocampal synaptic plasticity.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

Abstract Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, translin knockout (KO) mice, which lack translin/trax, exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome (fragile X mental retardation protein-FMRP-KO mice). Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic protein kinase A (PKA) activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression (mGluR-LTD), a hallmark of the FMRP KO mice. On the contrary, translin KO mice exhibited deficits in N-methyl-d-aspartate receptor (NMDAR) dependent LTD, a phenotype not observed in the FMRP knockouts. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling and suggest that translin/trax and FMRP play distinct roles in hippocampal synaptic plasticity.


2020 ◽  
Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

Abstract Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, mice lacking translin/trax exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome. Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic PKA activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression, a hallmark of the mouse model of fragile X syndrome. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling.


Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

AbstractActivity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, mice lacking translin/trax exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome. Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic PKA activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression, a hallmark of the mouse model of fragile X syndrome. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling.


2013 ◽  
Vol 106 ◽  
pp. 246-257 ◽  
Author(s):  
Daniele Lana ◽  
Francesca Cerbai ◽  
Jacopo Di Russo ◽  
Francesca Boscaro ◽  
Ambra Giannetti ◽  
...  

Cell ◽  
1997 ◽  
Vol 91 (7) ◽  
pp. 927-938 ◽  
Author(s):  
Kelsey C Martin ◽  
Andrea Casadio ◽  
Huixiang Zhu ◽  
Yaping E ◽  
Jack C Rose ◽  
...  

2016 ◽  
Vol 23 (3) ◽  
pp. 221-231 ◽  
Author(s):  
Victor Briz ◽  
Michel Baudry

Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.


Cell ◽  
1999 ◽  
Vol 99 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Andrea Casadio ◽  
Kelsey C Martin ◽  
Maurizio Giustetto ◽  
Huixiang Zhu ◽  
Mary Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document