scholarly journals Evaluation of 68Ga-PSMA PET/CT Images Acquired with a Reduced Scan Time Duration in Prostate Cancer Patients using the Digital Biograph Vision

2020 ◽  
Author(s):  
Manuel Weber ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
Maurizio Conti ◽  
...  

Abstract Aim 68Ga-PSMA PET/CT allows for a superior detection of prostate cancer (PC) tissue, especially in context of a low tumor burden. Digital PET/CT bears the potential of reducing scan time duration / administered tracer activity due to, for instance, its higher sensitivity and improved time coincidence resolution. It might thereby expand 68Ga-PSMA PET/CT that is currently limited by 68Ge/68Ga-generator yield. Our aim was to clinically evaluate the influence of a reduced scan time duration in combination with different image reconstruction algorithms on the diagnostic performance. Methods Twenty PC patients (11 for biochemical recurrence, 5 for initial staging, 4 for metastatic disease) sequentially underwent 68Ga-PSMA PET/CT on a digital Siemens Biograph Vision. PET data were collected in continuous-bed-motion mode with a scan time duration of approximately 17 min (reference acquisition protocol) and 5 min (reduced acquisition protocol). 4 iterative reconstruction algorithms were applied using a time-of-flight (TOF) approach alone or combined with point-spread-function (PSF) correction, each with 2 or 4 iterations. To evaluate the diagnostic performance, the following metrics were chosen: (a) per-region detectability, (b) the tumor maximum and peak standardized uptake values (SUVmax and SUVpeak) and (c) image noise using the liver’s activity distribution. Results Overall, 98% of regions (91% of affected regions) were correctly classified in the reduced acquisition protocol independent of the image reconstruction algorithm. Two nodal lesions (each ≤ 4 mm) were not identified (leading to downstaging in 1/20 cases). Mean absolute percentage deviation of SUVmax (SUVpeak) was approximately 9% (6%) for each reconstruction algorithm. The mean image noise increased from 13–21% (4 iterations) and from 10–15% (2 iterations) for PSF + TOF and TOF images. Conclusions High agreement at 3.5-fold reduction of scan time in terms of per-region detection (98% of regions) and image quantification (mean deviation ≤ 10%) was demonstrated; however, small lesions can be missed in about 10% of patients leading to downstaging (T1N0M0 instead of T1N1M0) in 5% of patients. Our results suggest that a reduction of scan time duration or administered 68Ga-PSMA activities can be considered in metastatic patients, where missing small lesions would not impact patient management.

2020 ◽  
Author(s):  
Manuel Weber ◽  
Walter Jentzen ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
...  

Abstract Aim: [68Ga]Ga-PSMA-11 PET/CT allows for a superior detection of prostate cancer tissue, especially in the context of a low tumor burden. Digital PET/CT bears the potential of reducing scan time duration / administered tracer activity due to, for instance, its higher sensitivity and improved time coincidence resolution. It might thereby expand [68Ga]Ga-PSMA-11 PET/CT that is currently limited by 68Ge/68Ga-generator yield. Our aim was to clinically evaluate the influence of a reduced scan time duration in combination with different image reconstruction algorithms on the diagnostic performance.Methods: Twenty prostate cancer patients (11 for biochemical recurrence, 5 for initial staging, 4 for metastatic disease) sequentially underwent [68Ga]Ga-PSMA-11 PET/CT on a digital Siemens Biograph Vision. PET data were collected in continuous-bed-motion mode with a mean scan time duration of 16.7 min (reference acquisition protocol) and 4.6 min (reduced acquisition protocol). 4 iterative reconstruction algorithms were applied using a time-of-flight (TOF) approach alone or combined with point-spread-function (PSF) correction, each with 2 or 4 iterations. To evaluate the diagnostic performance, the following metrics were chosen: (a) per-region detectability, (b) the tumor maximum and peak standardized uptake values (SUVmax and SUVpeak) and (c) image noise using the liver’s activity distribution.Results: Overall, 98% of regions (91% of affected regions) were correctly classified in the reduced acquisition protocol independent of the image reconstruction algorithm. Two nodal lesions (each ≤4 mm) were not identified (leading to downstaging in 1/20 cases). Mean absolute percentage deviation of SUVmax (SUVpeak) was approximately 9% (6%) for each reconstruction algorithm. The mean image noise increased from 13% to 21% (4 iterations) and from 10% to 15% (2 iterations) for PSF+TOF and TOF images.Conclusions: High agreement at 3.5-fold reduction of scan time in terms of per-region detection (98 % of regions) and image quantification (mean deviation ≤ 10 %) was demonstrated; however, small lesions can be missed in about 10% of patients leading to downstaging (T1N0M0 instead of T1N1M0) in 5 % of patients. Our results suggest that a reduction of scan time duration or administered [68Ga]Ga-PSMA-11 activities can be considered in metastatic patients, where missing small lesions would not impact patient management. Limitations include the small and heterogeneous sample size and the lack of follow-up.


2020 ◽  
Author(s):  
Manuel Weber ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
Maurizio Conti ◽  
...  

Abstract Aim: 68Ga-PSMA PET/CT allows for a superior detection of prostate cancer tissue, especially in the context of a low tumor burden. Digital PET/CT bears the potential of reducing scan time duration / administered tracer activity due to, for instance, its higher sensitivity and improved time coincidence resolution. It might thereby expand 68Ga-PSMA PET/CT that is currently limited by 68Ge/68Ga-generator yield. Our aim was to clinically evaluate the influence of a reduced scan time duration in combination with different image reconstruction algorithms on the diagnostic performance.Methods: Twenty prostate cancer patients (11 for biochemical recurrence, 5 for initial staging, 4 for metastatic disease) sequentially underwent 68Ga-PSMA PET/CT on a digital Siemens Biograph Vision. PET data were collected in continuous-bed-motion mode with a mean scan time duration of 16.7 min (reference acquisition protocol) and 4.6 min (reduced acquisition protocol). 4 iterative reconstruction algorithms were applied using a time-of-flight (TOF) approach alone or combined with point-spread-function (PSF) correction, each with 2 or 4 iterations. To evaluate the diagnostic performance, the following metrics were chosen: (a) per-region detectability, (b) the tumor maximum and peak standardized uptake values (SUVmax and SUVpeak) and (c) image noise using the liver’s activity distribution.Results: Overall, 98% of regions (91% of affected regions) were correctly classified in the reduced acquisition protocol independent of the image reconstruction algorithm. Two nodal lesions (each ≤4 mm) were not identified (leading to downstaging in 1/20 cases). Mean absolute percentage deviation of SUVmax (SUVpeak) was approximately 9% (6%) for each reconstruction algorithm. The mean image noise increased from 13% to 21% (4 iterations) and from 10% to 15% (2 iterations) for PSF+TOF and TOF images.Conclusions: High agreement at 3.5-fold reduction of scan time in terms of per-region detection (98 % of regions) and image quantification (mean deviation ≤ 10 %) was demonstrated; however, small lesions can be missed in about 10% of patients leading to downstaging (T1N0M0 instead of T1N1M0) in 5 % of patients. Our results suggest that a reduction of scan time duration or administered 68Ga-PSMA activities can be considered in metastatic patients, where missing small lesions would not impact patient management. Limitations include the small and heterogeneous sample size and the lack of follow-up.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuel Weber ◽  
Walter Jentzen ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
...  

Abstract Aim [68Ga]Ga-PSMA-11 PET/CT allows for a superior detection of prostate cancer tissue, especially in the context of a low tumor burden. Digital PET/CT bears the potential of reducing scan time duration/administered tracer activity due to, for instance, its higher sensitivity and improved time coincidence resolution. It might thereby expand [68Ga]Ga-PSMA-11 PET/CT that is currently limited by 68Ge/68Ga-generator yield. Our aim was to clinically evaluate the influence of a reduced scan time duration in combination with different image reconstruction algorithms on the diagnostic performance. Methods Twenty prostate cancer patients (11 for biochemical recurrence, 5 for initial staging, 4 for metastatic disease) sequentially underwent [68Ga]Ga-PSMA-11 PET/CT on a digital Siemens Biograph Vision. PET data were collected in continuous-bed-motion mode with a mean scan time duration of 16.7 min (reference acquisition protocol) and 4.6 min (reduced acquisition protocol). Four iterative reconstruction algorithms were applied using a time-of-flight (TOF) approach alone or combined with point-spread-function (PSF) correction, each with 2 or 4 iterations. To evaluate the diagnostic performance, the following metrics were chosen: (a) per-region detectability, (b) the tumor maximum and peak standardized uptake values (SUVmax and SUVpeak), and (c) image noise using the liver’s activity distribution. Results Overall, 98% of regions (91% of affected regions) were correctly classified in the reduced acquisition protocol independent of the image reconstruction algorithm. Two nodal lesions (each ≤ 4 mm) were not identified (leading to downstaging in 1/20 cases). Mean absolute percentage deviation of SUVmax (SUVpeak) was approximately 9% (6%) for each reconstruction algorithm. The mean image noise increased from 13 to 21% (4 iterations) and from 10 to 15% (2 iterations) for PSF + TOF and TOF images. Conclusions High agreement at 3.5-fold reduction of scan time in terms of per-region detection (98% of regions) and image quantification (mean deviation ≤ 10%) was demonstrated; however, small lesions can be missed in about 10% of patients leading to downstaging (T1N0M0 instead of T1N1M0) in 5% of patients. Our results suggest that a reduction of scan time duration or administered [68Ga]Ga-PSMA-11 activities can be considered in metastatic patients, where missing small lesions would not impact patient management. Limitations include the small and heterogeneous sample size and the lack of follow-up.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1100
Author(s):  
Mark J. Roef ◽  
Sjoerd Rijnsdorp ◽  
Christel Brouwer ◽  
Dirk N. Wyndaele ◽  
Albert J. Arends

Rationale: To formally determine the repeatability of Ga-68 PSMA lesion uptake in both relapsing and metastatic tumor. In addition, it was hypothesized that the BPL algorithm Q. Clear has the ability to lower SUV signal variability in the small lesions typically encountered in Ga-68 PSMA PET imaging of prostate cancer. Methods: Patients with biochemical recurrence of prostate cancer were prospectively enrolled in this single center pilot test-retest study and underwent two Ga-68 PSMA PET/CT scans within 7.9 days on average. Lesions were classified as suspected local recurrence, lymph node metastases or bone metastases. Two datasets were generated: one standard PSF + OSEM and one with PSF + BPL reconstruction algorithm. For tumor lesions, SUVmax was determined. Repeatability was formally assessed using Bland–Altman analysis for both BPL and standard reconstruction. Results: A total number of 65 PSMA-positive tumor lesions were found in 23 patients (range 1 to 12 lesions a patient). Overall repeatability in the 65 lesions was −1.5% ± 22.7% (SD) on standard reconstructions and −2.1% ± 29.1% (SD) on BPL reconstructions. Ga-68 PSMA SUVmax had upper and lower limits of agreement of +42.9% and −45.9% for standard reconstructions and +55.0% and −59.1% for BPL reconstructions, respectively (NS). Tumor SUVmax repeatability was dependent on lesion area, with smaller lesions exhibiting poorer repeatability on both standard and BPL reconstructions (F-test, p < 0.0001). Conclusion: A minimum response of 50% seems appropriate in this clinical situation. This is more than the recommended 30% for other radiotracers and clinical situations (PERCIST response criteria). BPL does not seem to lower signal variability in these cases.


2021 ◽  
Author(s):  
Naresh Kumar Regula ◽  
Vasileios Kostaras ◽  
Silvia Johansson ◽  
Carlos Trampal ◽  
Elin Lindström ◽  
...  

Abstract 18F-NaF positron emission tomography/computed tomography (fluoride PET/CT) is considered the most sensitive technique to detect bone metastasis in prostate cancer (PCa). 68Ga-PSMA-11 (PSMA) PET/CT is increasingly used for staging of PCa. This study primarily aimed to compare the diagnostic performance of fluoride PET/CT and Gallium based PSMA PET/CT in identifying bone metastasis followed by a comparison of PSMA PET/CT with contrast-enhanced CT (CE-CT) in identifying soft tissue lesions as a secondary objective. Methods: Twenty-eight PCa patients with high suspicion of disseminated disease following curative treatment were prospectively evaluated. PET/CT examinations using fluoride and PSMA were performed. All suspicious bone lesions were counted, and the tracer uptake was measured as standardized uptake values (SUV) for both tracers. In patients with multiple findings, ten bone lesions with highest SUVmax were selected from which identical lesions from both scans were considered for direct comparison of SUVmax. Soft tissue findings of local and lymph node lesions from CE-CT were compared with PSMA PET/CT. Results: Both scans were negative for bone lesions in 7 patients (25%). Of 699 lesions consistent with skeletal metastasis in 21 patients on fluoride PET/CT, PSMA PET/CT identified 579 lesions (83%). In 69 identical bone lesions fluoride PET/CT showed significantly higher uptake (mean SUVmax: 73.1±36.8) compared to PSMA PET/CT (34.5±31.4; p<0.001). Compared to CE-CT, PSMA PET/CT showed better diagnostic performance in locating local (96% vs 61%, p=0.004) and lymph node (94% vs 46%, p<0.001) metastasis. Conclusion: In this prospective comparative study PSMA PET/CT detected the majority of bone lesions that were positive on fluoride PET/CT. Further, this study indicates better diagnostic performance of PSMA PET/CT to locate soft tissue lesions compared to CE-CT.


2021 ◽  
Author(s):  
Naresh Kumar Regula ◽  
Vasileios Kostaras ◽  
Silvia Johansson ◽  
Carlos Trampal ◽  
Elin Lindström ◽  
...  

Abstract 18F-NaF positron emission tomography/computed tomography (fluoride PET/CT) is considered the most sensitive technique to detect bone metastasis in prostate cancer (PCa). 68Ga-PSMA-11 (PSMA) PET/CT is increasingly used for staging of PCa. This study primarily aimed to compare the diagnostic performance of fluoride PET/CT and PSMA PET/CT in identifying bone metastasis followed by a comparison of PSMA PET/CT with contrast-enhanced CT (CE-CT) in identifying soft tissue lesions as a secondary objective. Methods: Twenty-eight PCa patients with high suspicion of disseminated disease following curative treatment were prospectively evaluated. PET/CT examinations using fluoride and PSMA were performed. All suspicious bone lesions were counted, and the tracer uptake was measured as standardized uptake values (SUV) for both tracers. In patients with multiple findings, ten bone lesions with highest SUVmax were selected from which identical lesions from both scans were considered for direct comparison of SUVmax. PSA at scan was correlated with findings of both scans. Results: Both scans were negative for bone lesions in 7 patients (25%). Of 699 lesions consistent with skeletal metastasis in 21 patients on fluoride PET/CT, PSMA PET/CT identified 579 lesions (83%). In 69 identical bone lesions fluoride PET/CT showed significantly higher uptake (mean SUVmax:73.1 ± 36.8) compared to PSMA PET/CT (34.5 ± 31.4; p < 0.001). PSA at scan was correlated with SUVmax of PSMA PET/CT (r = 0.58; p = 0.01). No correlation was observed between PSA and fluoride PET/CT measurements. Compared to CE-CT, PSMA PET/CT showed better diagnostic performance in locating local (96% vs 61%, p = 0.004) and lymph node (94% vs 46%, p < 0.001) metastasis. Conclusion: PSMA PET/CT was able to detect majority of bone lesions that were positive on fluoride PET/CT and was better correlated with PSA at time of scan. Further, this study indicates better diagnostic performance of PSMA PET/CT to locate soft tissue lesions compared to CE-CT.


2020 ◽  
Author(s):  
Manuel Weber ◽  
Walter Jentzen ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
...  

Abstract Background: The superior accuracy and sensitivity of 18F-FDG-PET/CT in comparison to morphological imaging alone leads to an upstaging in up to 30 % of lymphoma patients. Novel digital PET/CT scanners might enable to reduce administered tracer activity or scan time duration while maintaining diagnostic performance; this might allow for a higher patient throughput or a reduced radiation exposure, respectively. In particular, the radiation exposure reduction is of interest due to the often young age and high remission rate of lymphoma patients.Methods: Twenty patients with (suspected) lymphoma (6 for initial staging, 12 after systemic treatment, 2 in suspicion of recurrence) sequentially underwent 18F-FDG-PET/CT examinations on a digital PET/CT (Siemens Biograph Vision) with a total scan time duration of 15 minutes (reference acquisition protocol) and 5 minutes (reduced acquisition protocol) using continuous-bed-motion. Both data sets were reconstructed using either standalone time of flight (TOF) or in combination with point spread function (PSF), each with 2 and 4 iterations. Lesion detectability by blinded assessment (separately for supra- and infradiaphragmal nodal lesions and for extranodal lesions), lesion image quantification, and image noise were used as metrics to assess diagnostic performance. Additionally, Deauville Score was compared for all patients after systemic treatment.Results: All defined regions were correctly classified in the images acquired with reduced emission time, and therefore, no changes in staging were observed. Lesion quantification was acceptable, that is, mean absolute percentage deviation of maximum and peak standardized uptake values were 6.8% and 6.4% (derived from 30 lesions). A threefold reduction of scan time duration led to an increase in image noise from 7.1% to 11.0% (images reconstructed with 4 iterations) and from 4.7% to 7.2% (images reconstructed with 2 iterations). No deviations in Deauville Score were observed.Conclusion: These results suggest that scan time duration or administered tracer activity can be reduced threefold without compromising diagnostic performance. Especially a reduction of administered activity might allow for a lower radiation exposure and better health economics. Larger trials are warranted to confirm our results.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manuel Weber ◽  
Walter Jentzen ◽  
Regina Hofferber ◽  
Ken Herrmann ◽  
Wolfgang Peter Fendler ◽  
...  

Abstract Background The superior accuracy and sensitivity of 18F-FDG-PET/CT in comparison to morphological imaging alone leads to an upstaging in up to 30% of lymphoma patients. Novel digital PET/CT scanners might enable to reduce administered tracer activity or scan time duration while maintaining diagnostic performance; this might allow for a higher patient throughput or a reduced radiation exposure, respectively. In particular, the radiation exposure reduction is of interest due to the often young age and high remission rate of lymphoma patients. Methods Twenty patients with (suspected) lymphoma (6 for initial staging, 12 after systemic treatment, 2 in suspicion of recurrence) sequentially underwent 18F-FDG-PET/CT examinations on a digital PET/CT (Siemens Biograph Vision) with a total scan time duration of 15 min (reference acquisition protocol) and 5 min (reduced acquisition protocol) using continuous-bed-motion. Both data sets were reconstructed using either standalone time of flight (TOF) or in combination with point spread function (PSF), each with 2 and 4 iterations. Lesion detectability by blinded assessment (separately for supra- and infradiaphragmal nodal lesions and for extranodal lesions), lesion image quantification, and image noise were used as metrics to assess diagnostic performance. Additionally, Deauville Score was compared for all patients after systemic treatment. Results All defined regions were correctly classified in the images acquired with reduced emission time, and therefore, no changes in staging were observed. Lesion quantification was acceptable, that is, mean absolute percentage deviation of maximum and peak standardized uptake values were 6.8 and 6.4% (derived from 30 lesions). A threefold reduction of scan time duration led to an increase in image noise from 7.1 to 11.0% (images reconstructed with 4 iterations) and from 4.7 to 7.2% (images reconstructed with 2 iterations). No deviations in Deauville Score were observed. Conclusion These results suggest that scan time duration or administered tracer activity can be reduced threefold without compromising diagnostic performance. Especially a reduction of administered activity might allow for a lower radiation exposure and better health economics. Larger trials are warranted to confirm our results.


Sign in / Sign up

Export Citation Format

Share Document