scan time
Recently Published Documents


TOTAL DOCUMENTS

504
(FIVE YEARS 211)

H-INDEX

28
(FIVE YEARS 6)

Author(s):  
Runke Wang ◽  
Yu Chen ◽  
Ruokun Li ◽  
Suhao Qiu ◽  
Zhiyong Zhang ◽  
...  

Abstract Objective: To achieve fast magnetic resonance elastography (MRE) at a low frequency for better shear modulus estimation of the brain. Approach: We proposed a multiphase radial DENSE MRE (MRD-MRE) sequence and an improved GRASP algorithm utilizing the sparsity of the harmonic motion (SH-GRASP) for fast MRE at 20 Hz. For the MRD-MRE sequence, the initial position encoded by one spatial modulation of magnetization (SPAMM) was decoded by an arbitrary number of readout blocks without increasing the number of phase offsets. Based on the harmonic motion, a modified total variation and temporal Fourier transform were introduced to utilize the sparsity in the temporal domain. Both phantom and brain experiments were carried out and compared with that from multiphase Cartesian DENSE-MRE (MCD-MRE), and conventional gradient echo sequence (GRE-MRE). Reconstruction performance was also compared with GRASP and compressed sensing. Main results: Results showed the scanning time of a fully sampled image with four phase offsets for MRD-MRE was only 1/5 of that from GRE-MRE. The wave patterns and estimated stiffness maps were similar to those from MCD-MRE and GRE-MRE. With SH-GRASP, the total scan time could be shortened by additional 4 folds, achieving a total acceleration factor of 20. Better metric values were also obtained using SH-GRASP for reconstruction compared with other algorithms. Significance: The MRD-MRE sequence and SH-GRASP algorithm can be used either in combination or independently to accelerate MRE, showing the potentials for imaging the brain as well as other organs.


Author(s):  
Ethan M. Hefner ◽  
Hui-chu Lin ◽  
Robert C. Cole ◽  
Phillip A. Moore ◽  
Richard J. McMullen

Abstract OBJECTIVE To compare image quality and acquisition time of corneal and retinal spectral domain optical coherence tomography (SD-OCT) under 3 different sedation-anesthesia conditions in horses. ANIMALS 6 middle-aged geldings free of ocular disease. PROCEDURES 1 randomly selected eye of each horse was evaluated via SD-OCT under the following 3 conditions: standing sedation without retrobulbar anesthetic block (RB), standing sedation with RB, and general anesthesia with RB. Five regions of interest were evaluated in the cornea (axial and 12, 3, 6, and 9 o’clock positions) and fundus (optic nerve head). Three diagnostic scans of predetermined quality were obtained per anatomical region. Image acquisition times and total scans per site were recorded. Corneal and retinal SD-OCT image quality was graded on a subjective scale from 0 (nondiagnostic) to 4 (excellent). RESULTS Mean values for the standing sedation without RB, standing sedation with RB, and general anesthesia conditions were 24, 23, and 17, respectively, for total cornea scan attempts; 23, 19, and 19 for total retina-scan attempts; 14.6, 13.2, and 9.2 minutes for total cornea scan time; 19.1, 9.2, and 13.0 for total retina scan time; 2.0, 2.3, and 2.5 for cornea grade; and 2.7, 2.9, and 2.5 for retina grade. CONCLUSIONS AND CLINICAL RELEVANCE The RB facilitated globe akinesia and improved the percentage of scans in frame and region of interest accuracy for retinal imaging via OCT in horses. Retrobulbar blocks improved clinical image acquisition while minimizing motion artifact.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Haihong Zhao ◽  
Bo Li ◽  
Xiaonian Zhang ◽  
Xiaolin Guo ◽  
Lixia Qian

Objective. This paper uses an optimized registration algorithm to analyze the diffusion-weighted imaging (DWI) scan parameters of acute ischemic stroke (AIS) in the memory function of stroke patients under exercise relearning (MRP). Methods. This study used a random case-control study. 65 patients with stroke and hemiplegia were randomly divided into a control group: conventional rehabilitation intervention (32 cases), and a treatment group: MRP (33 cases). Each patient uses 4 parameters for DWI examination and obtains 4 sets of images, group 1 is the control sequence, group 2 uses parallel acquisition technology, group 3 uses parallel acquisition technology and reduces the number of excitations, group 4 uses parallel acquisition technology to reduce repetition time (TR) and echo time (TE) and enlarge the field of view, and the scan time of each group is 177, 81, 23, and 18 s in sequence. At the time of enrollment and after 12 weeks of treatment, patients in each group were evaluated with Fugl-Meyer motor function score (FMA) and modified Pap index (MBI) for hand and wrist motor function and ADL. Results. After treatment, the FMA and MBI values of the treatment group were significantly higher than those of the control group ( P < 0.05 ). Conclusion. By adopting a parallel acquisition technique and reducing the number of excitations (group 3) scanning scheme, not only the scanning time is significantly shortened, but also the image quality can meet the diagnostic requirements, which has great application value for AIS patients who need emergency treatment. MRP can obviously promote the hand and wrist motor function and daily living ability of stroke hemiplegic patients.


2021 ◽  
Vol 11 (24) ◽  
pp. 12077
Author(s):  
Jialu Zhang ◽  
Xiaotong Zhang

Magnetic resonance imaging (MRI) integrates a static magnetic field, a time-varying gradient magnetic field at kHz and a radio-frequency (RF) magnetic field for non-invasive and real-time imaging; meanwhile, diffusion MRI (dMRI) pushes a further and closer dimension to the scale of neural fibers through sensitizing the gradient field to recognize water molecular displacement over distances of 1~20 μm along fibers. Contemporary dMRI approaches face challenges of magnetic field inhomogeneity as well as sequence-associated distortion and signal loss, the common remedies of which are repeated scans and post-reconstruction algorithms. In this study, over an anesthetized macaque with a customized head coil on 3 T MRI, we have proposed and implemented a monopolar diffusion-prepared module for turbo spin echo sequence (DP-TSE) as an alternative to achieve distortion-free, high-resolution diffusion imaging with improved SNR. The results showed high image quality and SNR efficiency as compared with conventional dMRI methods at millimeter level, allowing us to pursue submillimeter-scale dMRI over non-human primates (NHPs) in a relatively short scan time and without repetitions or post-processing, which could merit and advance our understanding of the structure and organizations of the primate’s brain.


2021 ◽  
Author(s):  
William T Clarke ◽  
Lukas Hingerl ◽  
Bernhard Strasser ◽  
Wolfgang Bogner ◽  
Ladislav Valkovic ◽  
...  

A 3D density-weighted concentric ring trajectory (CRT) MRSI sequence is implemented for cardiac 31P-MRS at 7T. The point-by-point k-space sampling of traditional phase-encoded CSI sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings trajectory, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high SNR. We first characterise the signal-to-noise ratio and point spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatio-temporal data was also performed after acquisition. The proposed sequence measures 3D localised PCr/ATP ratios of the human myocardium in 2.5 minutes, 2.6 times faster than the minimum scan time for the acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7T CRT 31P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


2021 ◽  
Author(s):  
Naila Rahman ◽  
Jordan Ramnarine ◽  
Kathy Xu ◽  
Arthur Brown ◽  
Corey A Baron

Background: Magnetization transfer saturation (MTsat) imaging was developed to reduce T1 dependence and improve specificity to myelin compared to the widely used MT ratio (MTR), while maintaining a feasible scan time. Knowledge of MTsat reproducibility is necessary to apply MTsat in preclinical neuroimaging. Purpose: To assess the test-retest reproducibility of MTR and MTsat in the mouse brain at 9.4 T and calculate sample sizes required to detect various effect sizes. Study Type: Prospective. Animal Model: C57Bl/6 Mouse Model (6 females and 6 males, aged 12 to 14 weeks). Field Strength/Sequence: Magnetization Transfer Imaging at 9.4 T. Assessment: All mice were scanned at two timepoints (5 days apart). MTR and MTsat maps were analyzed using mean region of interest (ROI), and whole brain voxel-wise analysis. Statistical Tests: Bland Altman plots assessed biases between test and retest measurements. Test retest reproducibility was evaluated via between and within-subject coefficients of variation (CV). Sample sizes required were calculated (at a 95 % significance level and power of 80 %), given various minimum detectable effect sizes, using both between and within-subject approaches. Results: Bland Altman plots showed negligible biases between test and retest sessions. ROI based and voxel-wise CVs revealed high reproducibility for both MTR (ROI: CVs < 8 %) and MTsat (ROI: CVs < 10 %). With a sample size of 6, changes on the order of 15% can be detected in MTR and MTsat, both between and within subjects, while smaller changes (6 to 8 %) require sample sizes of 10 to 15 for MTR, and 15 to 20 for MTsat. Data Conclusion: MTsat exhibits comparable reproducibility to MTR, while providing sensitivity to myelin with less T1 dependence than MTR. Our findings suggest both MTR and MTsat can detect moderate changes, common in pathologies, with feasible preclinical sample sizes. Keywords: magnetization transfer ratio, magnetization transfer saturation, reproducibility, preclinical rodent imaging


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8099
Author(s):  
Azrina Abd Aziz ◽  
Lila Iznita Izhar ◽  
Vijanth Sagayan Asirvadam ◽  
Tong Boon Tang ◽  
Azimah Ajam ◽  
...  

Collateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels. This paper presents a technique to objectively identify collateral vessels from non-collateral vessels. In our technique, several filters are used on the CBCT images of stroke patients to remove noises and artifacts, then multiscale top-hat transformation method is implemented on the pre-processed images to further enhance the vessels. Next, we applied three types of feature extraction methods which are gray level co-occurrence matrix (GLCM), moment invariant, and shape to explore which feature is best to classify the collateral vessels. These features are then used by the support vector machine (SVM), random forest, decision tree, and K-nearest neighbors (KNN) classifiers to classify vessels. Finally, the performance of these classifiers is evaluated in terms of accuracy, sensitivity, precision, recall, F-Measure, and area under the receiver operating characteristics curve. Our results show that all classifiers achieve promising classification accuracy above 90% and able to detect the collateral and non-collateral vessels from images.


Author(s):  
Nora-Josefin Breutigam ◽  
Matthias Günther ◽  
Daniel Christopher Hoinkiss ◽  
Klaus Eickel ◽  
Robert Frost ◽  
...  

Abstract Object In this work, we present a technique called simultaneous multi-contrast imaging (SMC) to acquire multiple contrasts within a single measurement. Simultaneous multi-slice imaging (SMS) shortens scan time by allowing the repetition time (TR) to be reduced for a given number of slices. SMC imaging preserves TR, while combining different scan types into a single acquisition. This technique offers new opportunities in clinical protocols where examination time is a critical factor and multiple image contrasts must be acquired. Materials and methods High-resolution, navigator-corrected, diffusion-weighted imaging was performed simultaneously with T2*-weighted acquisition at 3 T in a phantom and in five healthy subjects using an adapted readout-segmented EPI sequence (rs-EPI). Results The results demonstrated that simultaneous acquisition of two contrasts (here diffusion-weighted imaging and T2*-weighting) with SMC imaging is feasible with robust separation of contrasts and minimal effect on image quality. Discussion The simultaneous acquisition of multiple contrasts reduces the overall examination time and there is an inherent registration between contrasts. By using the results of this study to control saturation effects in SMC, the method enables rapid acquisition of distortion-matched and well-registered diffusion-weighted and T2*-weighted imaging, which could support rapid diagnosis and treatment of acute stroke.


Author(s):  
S. Bash ◽  
B. Johnson ◽  
W. Gibbs ◽  
T. Zhang ◽  
A. Shankaranarayanan ◽  
...  

Abstract Objective This prospective multicenter multireader study evaluated the performance of 40% scan-time reduced spinal magnetic resonance imaging (MRI) reconstructed with deep learning (DL). Methods A total of 61 patients underwent standard of care (SOC) and accelerated (FAST) spine MRI. DL was used to enhance the accelerated set (FAST-DL). Three neuroradiologists were presented with paired side-by-side datasets (666 series). Datasets were blinded and randomized in sequence and left-right display order. Image features were preference rated. Structural similarity index (SSIM) and per pixel L1 was assessed for the image sets pre and post DL-enhancement as a quantitative assessment of image integrity impact. Results FAST-DL was qualitatively better than SOC for perceived signal-to-noise ratio (SNR) and artifacts and equivalent for other features. Quantitative SSIM was high, supporting the absence of image corruption by DL processing. Conclusion DL enables 40% spine MRI scan time reduction while maintaining diagnostic integrity and image quality with perceived benefits in SNR and artifact reduction, suggesting potential for clinical practice utility.


Author(s):  
K. Hirschberg ◽  
Sz. M. Braun ◽  
O. Paul ◽  
M. Ochs ◽  
J. Riffel ◽  
...  

AbstractCardiovascular magnetic resonance imaging is one of the most important diagnostic modalities in the evaluation of cardiomyopathies. However, significant limitations are the complex and time-consuming workflows and the need of contrast agents. The aim of this multi-center retrospective study was to assess workflows and diagnostic value of a short, contrast agent-free cardiac magnetic resonance protocol. 160 patients from Heidelberg, Germany and 119 patients from Montreal, Canada with suspected cardiomyopathy and 20 healthy volunteers have been enrolled. Scans were performed at a 1.5Tesla or 3Tesla scanner in Heidelberg and at a 3Tesla scanner in Montreal. We used single-slice T1 map only. A stepwise analysis of images has been performed. The possible differential diagnosis after each step has been defined. T1-values and color-encoded T1 maps significantly contributed to the differential diagnosis in 54% of the cases (161/299); the final diagnosis has been done without late gadolinium enhancement images in 83% of healthy individuals, in 99% of patients with dilated cardiomyopathy, in 93% of amyloidosis patients, in 94% of patients with hypertrophic cardiomyopathy and in 85% of patients with hypertensive heart disease, respectively. Comparing the scan time with (48 ± 7 min) vs. without contrast agent (23 ± 5 min), significant time saving could be reached by the short protocol. Subgroup analysis showed the most additional diagnostic value of T1 maps in amyloidosis and hypertrophic cardiomyopathy or in confirmation of normal findings. In patients with unclear left ventricular hypertrophy, a short, non-contrast protocol can be used for diagnostic decision-making, if the quality of the T1 map is diagnostic, even if only one slice is available.


Sign in / Sign up

Export Citation Format

Share Document