scholarly journals Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of lipopolysaccharide-induced human bone marrow mesenchymal stem cells via ANRIL/miR-125a/APC axis

2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion–derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs).Methods: The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms.Results: This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway.Conclusion: The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.

2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion–derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods: The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms.Results: This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusion: The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion-derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms. Results This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusion The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion-derived mesenchymal stem cells (HAMSCs) have been studied as a potential strategy for inflammatory processes. Here, we explored the role of long non-coding RNA (LncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) in HAMSCs-droved osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs). Methods: Cells were incubated with coculture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect oxidative stress level. Flow cytometry was performed to determine the cell proliferation. The Alkaline phosphatase (ALP) and Alizarin red assay, cell transfection and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blot, dual-luciferase reporter assay and immunofluorescence Staining were used to evaluate the molecular mechanisms.Results: Here, we discovered that HAMSCs promoted osteogenesis of LPS-induced HBMSCs, while ANRIL level in HBMSCs was decreased during coculturing. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs, while its overexpression inhibited the HAMSCs-droved osteogenesis in vivo and in vitro; whereas its knockdown reversed these effects. Mechanistically, we found that downregulating ANRIL led to overexpression of microRNA-125a (miR-125a), and further contributed to the competitively bounding of miR-125a and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway. Conclusions: Our study indicates that HAMSCs promote osteogenic differentiation of LPS-induced HBMSCs via ANRIL/miR-125a/APC axis, and offer a novel approach for periodontitis therapy.


2022 ◽  
Vol 12 (4) ◽  
pp. 770-777
Author(s):  
Siyuan Chen ◽  
Weixiong Guo ◽  
Jinsong Wei ◽  
Han Lin ◽  
Fengyan Guo

Objective: The aim of this study was to explore the role of has_circ_0010452 in the progression of osteoporosis (OP) targeting miR-543, as well as their functions in regulating proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: The expression levels of circ_0010452 and miR-543 in hBMSCs at different time points of osteogenic differentiation were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). After transfection of circ_0010452 siRNA or miR-543 inhibitor in hBMSCs, the relative expression levels of osteogenic marker proteins, including oat spelt xylan (OSX), osteocalcin (OCN) and collagen I (Col-1), were determined by western blot. Cell proliferation of hBMSCs was valued by Cell Counting Kit 8 (CCK-8) assay. Dual-Luciferase reporter gene assay was performed to verify the relationship between circ_0010452 and miR-543. Subsequently, the regulatory effects of circ_0010452 and miR-543 on osteogenic differentiation and the capability of mineralization were evaluated by alkaline phosphatase (ALP) determination and alizarin red staining, respectively. Results: The expression of circ_0010452 decreased gradually and miR-543 increased in hBMSCs with the prolongation of osteogenic differentiation. circ_0010452 could bind to miR-543, which was negatively regulated by miR-543 in hBMSCs. Moreover, knockdown of circ_0010452 inhibited proliferation and osteogenic differentiation by upregulating miR-543, as well as upregulating expressions of OSX, OCN and Col-1. Furthermore, knockdown of circ_0010452 markedly promoted the capability of mineralization of hBMSCs, which was further reversed by transfection of miR-543 inhibitor. The knockdown of miR-543 partially reversed the inhibitory effect of circ_0010452 on the osteogenesis of hBMSCs. Conclusions: Silence of circ_0010452 promotes the development of OP via binding to miR-543 regulating proliferation and osteogenic differentiation of hBMSCs, thus promoting the progression of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document