Journal of Biomaterials and Tissue Engineering
Latest Publications


TOTAL DOCUMENTS

1898
(FIVE YEARS 965)

H-INDEX

16
(FIVE YEARS 2)

Published By American Scientific Publishers

2157-9091, 2157-9083

2022 ◽  
Vol 12 (5) ◽  
pp. 978-983
Author(s):  
Shengdi Ding ◽  
Shitong Xing ◽  
Zhanfeng Zhang ◽  
Zhenguo Sun ◽  
Xiaojie Dou ◽  
...  

The menopausal hormone abnormal changes such as estrogen deficiency and increased FSH secretion in female patients in old age may cause osteoporosis which is plagued by patients. The pathogenesis of osteoporosis is not yet fully understood. BMP in the transforming growth factor-β superfamily is a key member in the process of bone growth and development, among which BMP-2 exerts critical roles. Impaired osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) contributes to the progress of osteoporosis. BMSC plays an indispensable role in treating osteoporosis and can develop into different directions through induction. As the regenerative medicine nanotechnology has become a new medical method, it is believed that BMSC can be used to treat osteoporosis and other related diseases. Our study analyzed the effects of BMP-2/estrogen composite nanoparticles on the proliferation and differentiation of osteoporotic BMSC cells to provide a reliable reference for the future treatment. Our results showed that BMP-2/estrogen composite nanoparticles promoted BMSC cell proliferation, increased ALP activity, decreased apoptosis rate, increased the expression of Col-1, Runx2 and Osterix, upregulated the osteogenic marker BMP-2. As confirmed by Alizarin Red staining, it could differentiate into osteoblasts and the content of Trap was decreased. In conclusion, our study confirms that BMP-2/estrogen composite nanoparticles can promote BMSC cell proliferation, osteogenic differentiation, and inhibit osteoclast differentiation, thereby providing new treatments and theoretical reference basis for treating osteoporosis.


2022 ◽  
Vol 12 (4) ◽  
pp. 813-819
Author(s):  
Huiling Wang ◽  
Mian Lv ◽  
Yonghong Huang ◽  
Xiaoming Pan ◽  
Changyuan Wei

Objective: Circulating tumor cells (CTCs) have been considered as the origin of tumor metastasis and recurrence, which always indicate a poor prognosis. There are three phenotypes of CTCs according on different epithelial-to-mesenchymal transition (EMT) markers, including epithelial, mesenchymal, and epithelial/mesenchymal (mixed phenotypic) CTCs. We intended to explore the relationship among CTC phenotypes and the clinicopathological characteristics of patients with differentiated thyroid carcinoma (DTC). Methods: Peripheral blood samples from 58 patients with DTC were collected, and CTCs were isolated by cell sizes. To identify phenotypes of CTCs, branched DNA signal amplification technology was adopted to capture and amplify target sequences, and then multiplex RNA-in situ hybridization (RNA-ISH) assay was used to identify CTC phenotypes depended on epithelial-mesenchymal transition (EMT) markers. Results: The positive rate of CTCs was 77.59% in 58 DTC patients. Totally, 488 CTCs with detective phenotype were found. Among them, there were 121 (24.80%) epithelial CTCs, 67 (13.72%) mesenchymal CTCs, and 300 (61.48%) mixed phenotypic CTCs. An obvious increased epithelial CTCs was observed in male patients compared with female. Notably, CTCs were more prevailing in younger male patients with ETI and bilateral focus. Conclusions: The CTCs are common in DTC patients, and mixed phenotypic is the major phenotype, indicating that EMT is prevalent in DTC even though its prognosis was better than other epithelial tumors. Detection of CTC and its phenotypes might independently predict the prognosis of DTC.


2022 ◽  
Vol 12 (4) ◽  
pp. 841-847
Author(s):  
Meijiao Du ◽  
Zhengmei Wang ◽  
Geng Su ◽  
Yunxia Zhou ◽  
Chuan Luo

This study aims to analyze the role of mTOR inhibitor on the expression of miR-211 in rat brain tissue and the biological effect of miR-211 in attenuating seizure. Rats were randomly divided into four groups, and the number of seizures and the duration of single seizure were observed within 24 hours after intervention. The level of miR-211 in brain tissue was detected by RT qPCR, the apoptosis of nerve cells was assessed by TUNEL staining, the level of immune cells was detected by flow cytometry, and the level of serum inflammatory factors was determined by ELISA. The number of seizures and the duration of single seizure in the three groups treated by rapamycin within 24 hours were lower than those in the control group, and the symptom relief in group C was the best. After treatment, the expression level of miR-211 in the brain tissue of epileptic rats increased. TUNEL staining showed that neuronal apoptosis was obvious in epileptic rats. The anti apoptotic ability of group C was the most significant, followed by group D and group B. Compared with group A, the levels of CD3+ cells, CD8+ cells and CD4+/CD25+ cells in brain tissue of group C were decreased, while the levels of IL-2 and IFN-γ were lower in group C than those in control. In group C (n = 5), the levels of CD3+ cells, CD8+ cells and CD4+/CD25+ cells were elevated, and the levels of immune related cytokines IL-2 and IFN-γ were higher than those of rats without miR-211 inhibition. mTOR inhibitors can improve the local immune microenvironment, reduce the release of inflammatory factors, and finally decrease the frequency and duration of seizures by up regulating the level of miR-211 in rat brain tissue.


2022 ◽  
Vol 12 (4) ◽  
pp. 665-672
Author(s):  
Xiaojing Qin ◽  
Bowen Ding ◽  
Xueyan Zhang ◽  
Lan Wang ◽  
Qing Zhang ◽  
...  

Objective: To discuss In Vitro and In Vivo the effects of curcumin on colon cancer. Material and Methods: SW620 cell and nude mice with tumor were respectively divided into 3 groups: NC, low, middle, high and 5-Fu groups. Measuring the cell activity by MTT, the cell cycle and cell apoptosis using flow cytometry and relative proteins by WB assay in cell experiment. Evaluating tumor volume and weight, cell apoptosis rate by TUNEL assay and relative proteins by Immunohistochemistry (IHC). Results: Compared with NC group, the SW620 cell activity was significantly depressed with cell apoptosis and G1 phase rates increasing and PI3K, AKT and P53 proteins expression were significantly differences in curcumin treated groups with dose-dependent by WB assay; In Vivo study, the tumor volume and size were significantly suppressed and positive cell number were significantly up-regulation in curcumin treated groups with dose-dependent, and PI3K, AKT and P53 proteins expression were significantly differences in curcumin treated groups with dose-dependent by IHC. Conclusions: Curcumin had anti-tumor effects to colon cancer via regulation PI3K/AKT/P53 pathway In Vivo and vitro study.


2022 ◽  
Vol 12 (4) ◽  
pp. 807-812
Author(s):  
Yan Li ◽  
Yu-Ren Zhang ◽  
Ping Zhang ◽  
Dong-Xu Li ◽  
Tian-Long Xiao

It is a critical impact on the processing of biological cells to protein–protein interactions (PPIs) in nature. Traditional PPIs predictive biological experiments consume a lot of human and material costs and time. Therefore, there is a great need to use computational methods to forecast PPIs. Most of the existing calculation methods are based on the sequence characteristics or internal structural characteristics of proteins, and most of them have the singleness of features. Therefore, we propose a novel method to predict PPIs base on multiple information fusion through graph representation learning. Specifically, firstly, the known protein sequences are calculated, and the properties of each protein are obtained by k-mer. Then, the known protein relationship pairs were constructed into an adjacency graph, and the graph representation learning method–graph convolution network was used to fuse the attributes of each protein with the graph structure information to obtain the features containing a variety of information. Finally, we put the multi-information features into the random forest classifier species for prediction and classification. Experimental results indicate that our method has high accuracy and AUC of 78.83% and 86.10%, respectively. In conclusion, our method has an excellent application prospect for predicting unknown PPIs.


2022 ◽  
Vol 12 (4) ◽  
pp. 731-738
Author(s):  
Zhitang Chang ◽  
Guotai Sheng ◽  
Yizhong Zhou ◽  
Zhiyong Wu ◽  
Guobo Xie ◽  
...  

Based on the promotion of myocardial activity via endothelial progenitor cells (EPCs) subsequent to acute myocardial infarction (AMI), our research was designed to explore the influence of excessive HIF-1α expression in expanded EPCs (eEPCs) on promotion of the activity of left ventricle subsequent to MI. Isolation of EPCs from cord blood was performed before transduction with the help of retroviral vector with or without HIF-1α expression. Transplantation was performed subsequent to ligation of the left anterior descending coronary artery in mice. Ejection fraction (EF) of left ventricle was promoted via transplantation after 2 weeks. Excessive HIF-1α expression enhanced EF of left ventricle and decreased the extent of MI. It was revealed via functional studies that excessive HIF-1α expression enhanced proliferation of EPCs triggered by low oxygen concentration and suppressed cell death in the region of infarction. Moreover, markers of endothelium CD31, VEGF, and eNOS were upregulated. Transplantation of eEPCs with excessive HIF-1α expression in AMI can promote myocardial activities by increasing differentiation, generation of vessels, proliferation of eEPCs, and suppressing cell death. The above findings propose that regulation of EPCs via HIF-1α enhances the activity as well as mobilization of EPCs, indicating that reinforcement of expression of HIF-1α is beneficial for coronary heart disease.


2022 ◽  
Vol 12 (4) ◽  
pp. 873-877
Author(s):  
Dongqian Xie ◽  
Zhicheng Gao ◽  
Mei Liu ◽  
Defeng Wang

Metformin is shown to have hypoglycemic effects. However, the relationship between metformin’s intervention in FFA-induced endoplasmic reticulum stress-mediated insulin resistance (IR) and insulin β-cell apoptosis under high-glucose condition remains unclear. Our study intends to assess their relationship. Human pancreatic β-cells were treated with metformin and cell proliferation and IR were detected by MTT assay along with detection of Wnt/β-catenin signaling by RT-PCR, cell cycle and apoptosis by flow cytometry. Metformin inhibited β cell proliferation which was mediated by FFA-induced endoplasmic reticulum stress in a time-dependent and dose-dependent manner as well as induced cell cycle arrest at G2/M phase. In addition, metformin inhibited β-catenin signaling activation and decreased the expression of c-myc, Dvl-2, survivin, Dvl-3, GSK-3β (p-ser9) and promoted GSK-3 (p-tyr216) and Axin-2 expression. In conclusion, metformin inhibits Wnt/β-catenin signaling and promotes FFA to induce endoplasmic reticulum stress, thereby mediating pancreatic β-cells behaviors.


2022 ◽  
Vol 12 (4) ◽  
pp. 717-723
Author(s):  
Bing Pan ◽  
Binghui Liu ◽  
Juhua Pan ◽  
Jian Xin ◽  
Chenglin Fu

Introduction: Breast cancer (BC) developed in the glandular epithelial tissue of breast. microRNA (miR)-367 is an important player in cancer progression, but has never been studied in BC. This experiment tries to probe the mechanism of miR-367 in BC treatment with downstream target gene. Materials and Methods: Human BC cell lines and healthy breast epithelium cells were applied in this study. After the transfection of miR-367 inhibitor or mimic into BC cells, functional assays were conducted to measure cell growth. Afterwards, flow cytometry was employed in apoptosis verification. Then, target relation between miR-367 and ARID1B was certified. Furthermore, ARID1B level was also measured. Results: miR-367 was underexpressed in human BC cells (p < 0.05). Besides, overexpressed miR-367 inhibited BC cell proliferation and encouraged apoptosis, while underexpressed miR-367 led to an opposite outcome (p < 0.05). This experiment then implied that miR-367 dramatically suppressed the activity of cell transfected with ARID1B-wild type. miR-367 overexpression quenched ARID1B level in BC cells; while silencing miR-367 upregulated ARID1B expression (p < 0.05). Conclusion: Our experiment discovered that miR-367 quenched BC cell growth and promoted apoptosis by targeting ARID1B. This investigation may provide novel insights in BC treatment.


2022 ◽  
Vol 12 (4) ◽  
pp. 800-806
Author(s):  
Jing Cao ◽  
Fan Yang ◽  
Haiyan Zhou ◽  
Duojiao Fan ◽  
Hengzhou Li ◽  
...  

Our study explores whether BMSC-exosomes overexpressing miR-141 can regulate Wnt signal to inhibit the malignant biological behavior of glioma cells. Thirty healthy mice were selected to construct a glioma mouse model and assigned randomly into the control group, miR-141 NC group, and miR-141 mimic group followed by analysis of cell proliferation, apoptosis, protein expression and mRNA expression by MTT method, flow cytometry, Western blot and RT-PCR methods. Compared with the other two groups, miR-141 mimic group showed reduced number of cell proliferation at 24 h and 48 h, decreased cell migration and invasion ability, and the increased cell apoptosis rate (P < 0.05). In miR-141 mimic group, the protein expression of miR-141 was the highest, while the protein expression of β-catenin, survivin and c-myc was the lowest (P < 0.05). In conclusion, BMSC-exosomes overexpressing miR-141 can inhibit the malignant biological behavior of GC cells possibly by inhibiting the activation of Wnt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document