scholarly journals Robust-LSTM: A Novel Approach to Short-Traffic Flow Prediction Based on Signal Decomposition

Author(s):  
Erdem Doğan

Abstract Intelligent transport systems need accurate short-term traffic flow forecasts. However, developing a robust short-term traffic flow forecasting approach is a challenge due to the stochastic character of traffic flow. This study proposes a novel approach for short-term traffic flow prediction task namely Robust Long Short Term Memory (R-LSTM) based on Robust Empirical Mode Decomposing (REDM) algorithm and Long Short Term Memory (LSTM). Short-term traffic flow data provided from the Caltrans Performance Measurement System (PeMS) database were used in the training and testing of the model. The dataset was composed of traffic data collected by 25 traffic detectors on different freeways’ main lanes. The time resolution of the dataset was set to 15 minutes, and the Hampel preprocessing algorithm was applied for outlier elimination. The R-LSTM predictions were compared with the state-of-art models, utilizing RMSE, MSE, and MAPE as performance criteria. Performance analyzes for various periods show that R-LSTM is remarkably successful in all time periods. Moreover, developed model performance is significantly higher, especially during mid-day periods when traffic flow fluctuations are high. These results show that R-LSTM is a strong candidate for short-term traffic flow prediction, and can easily adapt to fluctuations in traffic flow. In addition, robust models for short-term predictions can be developed by applying the signal separation method to traffic flow data.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2946 ◽  
Author(s):  
Wangyang Wei ◽  
Honghai Wu ◽  
Huadong Ma

Smart cities can effectively improve the quality of urban life. Intelligent Transportation System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow prediction method, called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method. In our method, the AutoEncoder is used to obtain the internal relationship of traffic flow by extracting the characteristics of upstream and downstream traffic flow data. Moreover, the Long Short-Term Memory (LSTM) network utilizes the acquired characteristic data and the historical data to predict complex linear traffic flow data. The experimental results show that the AE-LSTM method had higher prediction accuracy. Specifically, the Mean Relative Error (MRE) of the AE-LSTM was reduced by 0.01 compared with the previous prediction methods. In addition, AE-LSTM method also had good stability. For different stations and different dates, the prediction error and fluctuation of the AE-LSTM method was small. Furthermore, the average MRE of AE-LSTM prediction results was 0.06 for six different days.


Sign in / Sign up

Export Citation Format

Share Document