scholarly journals iGrow: A Smart Agriculture Solution to Autonomous Greenhouse Control

Author(s):  
Xiaoyan Cao ◽  
Yao Yao ◽  
Lanqing Li ◽  
Wanpeng Zhang ◽  
Zhicheng An ◽  
...  

Abstract Agriculture is the foundation of human civilization. However, the rapid increase and aging of the global population pose challenges on this cornerstone by demanding more healthy and fresh food. Internet of Things (IoT) technology makes modern autonomous greenhouse a viable and reliable engine of food production. However, the educated and skilled labor capable of overseeing high-tech greenhouses is scarce. Artificial intelligence (AI) and cloud computing technologies are promising solutions for precision control and high-efficiency production in such controlled environments. In this paper, we propose a smart agriculture solution, namely iGrow: (1) we use IoT and cloud computing technologies to measure, collect, and manage growing data, to support iteration of our decision-making AI module, which consists of an incremental model and an optimization algorithm; (2) we propose a three-stage incremental model based on accumulating data, enabling growers/central computers to schedule control strategies conveniently and at low cost; (3) we propose a model-based iterative optimization algorithm, which can dynamically optimize the greenhouse control strategy in real-time production. In the simulated experiment, evaluation results show the accuracy of our incremental model is comparable to an advanced tomato simulator, while our optimization algorithms can beat the champion of the 2nd Autonomous Greenhouse Challenge. Compelling results from the A/B test in real greenhouses demonstrate that our solution significantly increases production (commercially sellable fruits) (+10.15%) and net profit (+87.07%) with statistical significance compared to planting experts. The data and source codes of our work are provided as supplementary materials, and more details are available at: https://github.com/holmescao/SmartAgricultureSolution-iGrow.

2021 ◽  
Author(s):  
Urmila Shrawankar ◽  
Latesh Malik ◽  
Sandhya Arora

2017 ◽  
Vol 12 (1) ◽  
pp. 83-88
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

In this paper, various variants of decomposition of tasks in a group of robots using cloud computing technologies are considered. The specifics of the field of application (teams of robots) and solved problems are taken into account. In the process of decomposition, the solution of one large problem is divided into a solution of a series of smaller, simpler problems. Three ways of decomposition based on linear distribution, swarm interaction and synthesis of solutions are proposed. The results of experimental verification of the developed decomposition algorithms are presented, the working capacity of methods for planning trajectories in the cloud is shown. The resulting solution is a component of the complex task of building effective teams of robots.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Wei Ma ◽  
Huanqin Li ◽  
Deden Witarsyah

Abstract Separation is the primary consideration in cloud computing security. A series of security and safety problems would arise if a separation mechanism is not deployed appropriately, thus affecting the confidence of cloud end-users. In this paper, together with characteristics of cloud computing, the separation issue in cloud computing has been analyzed from the perspective of information flow. The process of information flow in cloud computing systems is formalized to propose corresponding separation rules. These rules have been verified in this paper and it is shown that the rules conform to non-interference security, thus ensuring the security and practicability of the proposed rules.


Sign in / Sign up

Export Citation Format

Share Document