An AI Based Irrigation and Weather Forecasting System utilizing LoRaWAN and Cloud Computing Technologies

Author(s):  
Ala' Khalifeh ◽  
Abdullah Al-Qammaz ◽  
Khalid A. Darabkh ◽  
Laith Abualigah ◽  
Ahmad M. Khasawneh ◽  
...  
2017 ◽  
Vol 12 (1) ◽  
pp. 83-88
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

In this paper, various variants of decomposition of tasks in a group of robots using cloud computing technologies are considered. The specifics of the field of application (teams of robots) and solved problems are taken into account. In the process of decomposition, the solution of one large problem is divided into a solution of a series of smaller, simpler problems. Three ways of decomposition based on linear distribution, swarm interaction and synthesis of solutions are proposed. The results of experimental verification of the developed decomposition algorithms are presented, the working capacity of methods for planning trajectories in the cloud is shown. The resulting solution is a component of the complex task of building effective teams of robots.


Author(s):  
Falak Shad Memon ◽  
M. Yousuf Sharjeel

<span>Torrential rains and floods have been causing irreplaceable losses to both human lives and environment in <span>Pakistan. This loss has reached to an extent of assively aggrieved situation to reinstate life at <span>operationally viable position. This paper unfolds the notion that only constructive paradigm shift to <span>overcome this phenomenon is vital as a strategy. Multiple levels of observations and on-site assessment <span>of various calamity-prone venues were considered to probe into this scenario. Some of the grave site in <span>Sindh and Punjab were observed and necessarily practicable measures were recommended to avoid loss to <span>human health and environment. The paper finds that a consistent drastic management authority on <span>national level with appropriate caliber and forecasting expertise can reduce the damage to human life and <span>environment to great extent. Weather forecasting system need to be installed at many appropriately <span>observed cities and towns in the country with adequate man power, funds and technical recourses. By <span>implementing the proper frame work of prevention and mitigation of floods country can save the major <span>costs cleanup and recovery. These measures are expected to reduce operational cost of state in terms of <span>GDP and GNP to restore life and environment.</span></span></span></span></span></span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span>


2014 ◽  
Vol 123 (2) ◽  
pp. 247-258 ◽  
Author(s):  
V S PRASAD ◽  
SAJI MOHANDAS ◽  
SURYA KANTI DUTTA ◽  
M DAS GUPTA ◽  
G R IYENGAR ◽  
...  

2017 ◽  
Vol 98 (12) ◽  
pp. 2675-2688 ◽  
Author(s):  
R. J. Ronda ◽  
G. J. Steeneveld ◽  
B. G. Heusinkveld ◽  
J. J. Attema ◽  
A. A. M. Holtslag

Abstract Urban landscapes impact the lives of urban dwellers by influencing local weather conditions. However, weather forecasting down to the street and neighborhood scale has been beyond the capabilities of numerical weather prediction (NWP) despite the fact that observational systems are now able to monitor urban climate at these scales. In this study, weather forecasts at intra-urban scales were achieved by exploiting recent advances in topographic element mapping and aerial photography as well as looking at detailed mappings of soil characteristics and urban morphological properties, which were subsequently incorporated into a specifically adapted Weather Research and Forecasting (WRF) Model. The urban weather forecasting system (UFS) was applied to the Amsterdam, Netherlands, metropolitan area during the summer of 2015, where it produced forecasts for the city down to the neighborhood level (a few hundred meters). Comparing these forecasts to the dense network of urban weather station observations within the Amsterdam metropolitan region showed that the forecasting system successfully determined the impact of urban morphological characteristics and urban spatial structure on local temperatures, including the cooling effect of large water bodies on local urban temperatures. The forecasting system has important practical applications for end users such as public health agencies, local governments, and energy companies. It appears that the forecasting system enables forecasts of events on a neighborhood level where human thermal comfort indices exceeded risk thresholds during warm weather episodes. These results prove that worldwide urban weather forecasting is within reach of NWP, provided that appropriate data and computing resources become available to ensure timely and efficient forecasts.


2021 ◽  
Author(s):  
Jonas Bhend ◽  
Jean-Christophe Orain ◽  
Vera Schönenberger ◽  
Christoph Spirig ◽  
Lionel Moret ◽  
...  

&lt;p&gt;Verification is a core activity in weather forecasting. Insights from verification are used for monitoring, for reporting, to support and motivate development of the forecasting system, and to allow users to maximize forecast value. Due to the broad range of applications for which verification provides valuable input, the range of questions one would like to answer can be very large. Static analyses and summary verification results are often insufficient to cover this broad range. To this end, we developed an interactive verification platform at MeteoSwiss that allows users to inspect verification results from a wide range of angles to find answers to their specific questions.&lt;/p&gt;&lt;p&gt;We present the technical setup to achieve a flexible yet performant interactive platform and two prototype applications: monitoring of direct model output from operational NWP systems and understanding of the capabilities and limitations of our pre-operational postprocessing. We present two innovations that illustrate the user-oriented approach to comparative verification adopted as part of the platform. To facilitate the comparison of a broad range of forecasts issued with varying update frequency, we rely on the concept of time of verification to collocate the most recent available forecasts at the time of day at which the forecasts are used. In addition, we offer a matrix selection to more flexibly select forecast sources and scores for comparison. Doing so, we can for example compare the mean absolute error (MAE) for deterministic forecasts to the MAE and continuous ranked probability scores of probabilistic forecasts to illustrate the benefit of using probabilistic forecasts.&lt;/p&gt;


Author(s):  
Chia-Chu Chiang ◽  
Shucheng Yu

Cloud computing provides an innovative technology that enables Software as a Service (SaaS) to its customers. With cloud computing technologies, a suite of program understanding tools is suggested to be deployed in a cloud to aid the generation of test cases for software testing. This cloud-enabled service allows customers to use these tools through an on-demand, flexible, and pay-per-use model. Lastly, the issues and challenges of cloud computing are presented.


Author(s):  
Zaigham Mahmood

Cloud Computing is an attractive paradigm for organisations that have a requirement to process large scalable distributed applications. It allows for self-provisioning of cloud resources to develop and host applications as well as acquire storage and networking resources. Connected Government (c-government) is an area where cloud technologies can be effectively used to achieve the benefits that the cloud paradigm promises. Social Media, Web 2.0 and mobile technologies can all help to further enhance the connected government capabilities. Using such technologies, governments and citizens can engage in real time in the electronic participation of a government's functioning. In this chapter, we introduce the cloud paradigm and then discussing the requirements of c-government, we outline how cloud technologies can help to achieve an open and transparent c-government. The aim is to provide the basics of relationship between c-government and cloud computing to set the scene for other contributions in this volume.


Sign in / Sign up

Export Citation Format

Share Document