scholarly journals Displacement and Stress Distribution of the Craniomaxillofacial Complex Under Different Surgical Conditions: A Three-Dimensional Finite Element Analysis of Fracture Mechanics

Author(s):  
Junjie Chen ◽  
Yuhan Xu ◽  
Chengri Li ◽  
Lingling Zhang ◽  
Fang Yi ◽  
...  

Abstract Objective: To provide a simplified treatment strategy for patients with maxillary transverse deficiency. We investigated and compared the fracture mechanics and stress distribution of a midline palatal suture under dynamic loads during surgically-assisted rapid palatal expansion. Methods: Based on the cone-beam computed tomography (CBCT) data of a 21-year-old female volunteer, a three-dimensional model of the cranio-maxillofacial complex (including the palatal suture) was constructed. A finite element analysis model was constructed based on meshwork. After the yield strength of the palatal suture was set, an increasing expansion force (0–500 N) was applied within 140 ms to calculate the time–load curve, which mimicked nonsurgical bone expansion (model A). The same method was used to evaluate the fracture process, time and stress distribution of the palatal suture in maxillary lateral osteotomy-assisted (model B) and LeFort osteomy I (LFIO)-assisted expansion of the maxillary arch (model C). Results: Compared with model A, the palatal suture of model B and model C showed a faster stress accumulation rate and shorter fracture time, and the fracture time of model B and model C was almost identical. Compared with model A, we discovered that model B and model C showed greater lateral extension of the maxilla, and the difference was reflected mainly in the lower part of the maxilla, and there was no difference between model B and model C in lateral extension of the maxilla. Conclusions: Compared with arch expansion using nonsurgical assistance (model A), arch expansion using maxillary lateral wall-osteotomy (model B) or LFIO had a faster rate of stress accumulation, shorter time of fracture of the palatal suture and increased lateral displacement of the maxilla. Compared with arch expansion using LFIO (model C), arch expansion using lateral osteotomy (model B) had a similar duration of palatal suture rupture and lateral maxillary extension. In view of the trauma and serious complications associated with LFIO, maxillary lateral wall-osteotomy could be considered a substitute for LFIO.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junjie Chen ◽  
Yuhan Xu ◽  
Chengri Li ◽  
Lingling Zhang ◽  
Fang Yi ◽  
...  

Abstract Objective To provide a simplified treatment strategy for patients with maxillary transverse deficiency. We investigated and compared the fracture mechanics and stress distribution of a midline palatal suture under dynamic loads during surgically-assisted rapid palatal expansion. Methods Based on the cone-beam computed tomography (CBCT) data of a 21-year-old female volunteer, a three-dimensional model of the cranio-maxillofacial complex (including the palatal suture) was constructed. A finite element analysis model was constructed based on meshwork. After the yield strength of the palatal suture was set, an increasing expansion force (0–500 N) was applied within 140 ms to calculate the time–load curve, which mimicked nonsurgical bone expansion (model A). The same method was used to evaluate the fracture process, time and stress distribution of the palatal suture in maxillary lateral osteotomy-assisted (model B) and LeFort osteomy I (LFIO)-assisted expansion of the maxillary arch (model C). Results Compared with model A, the palatal suture of model B and model C showed a faster stress accumulation rate and shorter fracture time, and the fracture time of model B and model C was almost identical. Compared with model A, we discovered that model B and model C showed greater lateral extension of the maxilla, and the difference was reflected mainly in the lower part of the maxilla, and there was no difference between model B and model C in lateral extension of the maxilla. Conclusions Compared with arch expansion using nonsurgical assistance (model A), arch expansion using maxillary lateral wall-osteotomy (model B) or LFIO had a faster rate of stress accumulation, shorter time of fracture of the palatal suture and increased lateral displacement of the maxilla. Compared with arch expansion using LFIO (model C), arch expansion using lateral osteotomy (model B) had a similar duration of palatal suture rupture and lateral maxillary extension. In view of the trauma and serious complications associated with LFIO, maxillary lateral wall-osteotomy could be considered a substitute for LFIO.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 199-207
Author(s):  
Lohitha Kalluri ◽  
Bernard Seale ◽  
Megha Satpathy ◽  
Josephine F. Esquivel-Upshaw ◽  
Yuanyuan Duan

This study was performed as an adjunct to an existing clinical study to validate the effect of veneer: framework thickness ratio on stress distribution in an implant-supported all-ceramic fixed partial denture. Two commercially available titanium dental implants with corresponding customized abutments and a patient-retrieved all-ceramic fixed partial denture were scanned using a high-resolution micro-CT scanner. Reconstructed 3D objects, along with a simulated bone surface, were incorporated into a non-manifold assembly and meshed simultaneously using Simpleware software (Synopsys Simpleware ScanIP Version P-2019.09; Mountain View, CA). Three such volume meshes (Model A, Model B, Model C) corresponding to veneer: framework thickness ratios of 3:1, 1:1, and 1:3 respectively were created, and exported to a finite element analysis software (ABAQUS). An axial load of 110 N was applied uniformly on the occlusal surfaces to calculate the static stresses and contour plots were generated in the post-processing module. From the data obtained, we observed optimum stress distribution in Model B. Also, the tensile stresses were concentrated in the posterior connector region of the prosthesis in all three models tested. Within the limitations of this study, we can conclude that equal thickness of veneer and framework layers would aid in better stress distribution.


SIMULATION ◽  
2020 ◽  
pp. 003754972097278
Author(s):  
Tigran A Muradyan ◽  
Nshan A Muradyan ◽  
Sergey V Verlinski ◽  
Anna Yu Poghosyan

Connecting implants with teeth is sometimes considered for the support of prostheses in partial edentulism, especially in periodontally compromised and surgical treated patients. The aim of this study is the presentation of a model of tooth–implant nonrigid fixation in comparison with implant–implant and implant–tooth rigid fixation by three-dimensional (3D) finite element analysis. As a model, a situation with a mandibular second premolar and two molars edentulism was selected. Two implantation options with three prosthetics designs were considered. The comparative analysis of stress and strain distribution values under vertical 100 and 200 N loading was performed. The highest peri-implant crestal bone stress distribution was observed in the model with the implant–tooth rigid fixation with 200 N vertical loading with results of 136.56 MPa. In the model with implant–tooth nonrigid fixation, the maximum strain value was observed in the tooth–connector zone and the stress distribution was higher in the connectors and the prosthesis pontic zone, with a maximal value of 27.77 MPa. The design of a tooth–implant fixed denture could be suggested as a method of choice for rehabilitation of the posterior edentulous segment in cases when only one distal implant could be installed. Further clinical research is required to obtain reliable validation data for the proposed method.


Sign in / Sign up

Export Citation Format

Share Document