stress accumulation
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 58)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 65 ◽  
pp. 236-253
Author(s):  
Yuefeng Su ◽  
Qiyu Zhang ◽  
Lai Chen ◽  
Liying Bao ◽  
Yun Lu ◽  
...  

2022 ◽  
Author(s):  
Muhammad Taufiq Rafie ◽  
David P. Sahara ◽  
Phil R. Cummins ◽  
Wahyu Triyoso ◽  
Sri Widiyantoro

Abstract The seismically active Sumatra subduction zone has generated some of the largest earthquakes in the instrumental record, and both historical accounts and paleogeodetic coral studies indicate such activity has historical recorded megathrust earthquakes and transferred stress to the surrounding, including the Great Sumatran Fault (GSF). Therefore, evaluating the stress transfer from these large subduction earthquakes could delineate the highly stressed area as potential-earthquake region along the GSF. In this study, we investigated eight megathrust earthquakes from 1797 to 2010 and resolved the accumulated Coulomb stress changes onto the 18 segments along the GSF. Additionally, we also estimated the rate of tectonic stress on the GSF segments which experienced large earthquake using the case of: (1) no sliver movement and (2) with sliver movement. Based on the historical stress changes of large earthquakes and the increase in tectonic stress rate, we analysed the historical stress changes time evolution on the GSF. The Coulomb stress accumulation of megathrust earthquakes between 1797-1907 increase the stress changes mainly on the southern part of GSF which followed by four major events between 1890-1943. The estimation of tectonic stress rates using case (1) produces low rate and long recurrence intervals which implies that the megathrust earthquakes plays an important role in allowing the GSF earthquake to occur. When implementing the arc-parallel sliver movement of case (2) to the calculation, the tectonic stress rates is 9 to 58 times higher than case (1) of no sliver movement. The observed slip rate of 15-16 mm/yr at the GSF is consistent with the recurrence interval for full-segment rupture of 100-200 years obtained from case (2). This suggests that the GSF earthquake is more controlled by the rapid arc-parallel forearc sliver motion. Furthermore, the analysis of stress changes time evolution model shows that some segments such as Tripa (North and South), Angkola, Musi and Manna appear to be brought back in their seismic cycles since these segments have experienced full-segment rupture and likely locked, increasing their earthquake hazard potentials.


Author(s):  
Vitaly Atapin ◽  
Alexey Bondarenko ◽  
Mykola Sysyn ◽  
Dimitri Grün

AbstractContinuous welded rail (CWR) track has great advantages of low-cost maintenance, environmental influence, and ride comfort. However, the CWR track is subjected to the longitudinal stresses in rails due to temperature influence as well the inhomogeneous stress accumulation due to train loadings. The stresses cause the accelerated track lateral irregularity accumulation that without timely maintenance can cause track buckling. The present paper present a method of the CWR track lateral stability estimation during its lifecycle using the track geometry monitoring information from the track measurement cars. The methods proposes a systematic approach of track stability evaluation based on multiple criteria of track stability evaluation. It takes into account the lateral resistance of the track, actual temperatures, and the lateral geometry condition of the track. The presented case study of a half-year track geometry monitoring and the track stability evaluation in a track curve shows the practical possibility of the recent detection of the track sections with low lateral stability and buckling prevention.


Author(s):  
Arnaud L. Lalive ◽  
Alvaro Nuno‐Perez ◽  
Anna Tchenio ◽  
Manuel Mameli

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junjie Chen ◽  
Yuhan Xu ◽  
Chengri Li ◽  
Lingling Zhang ◽  
Fang Yi ◽  
...  

Abstract Objective To provide a simplified treatment strategy for patients with maxillary transverse deficiency. We investigated and compared the fracture mechanics and stress distribution of a midline palatal suture under dynamic loads during surgically-assisted rapid palatal expansion. Methods Based on the cone-beam computed tomography (CBCT) data of a 21-year-old female volunteer, a three-dimensional model of the cranio-maxillofacial complex (including the palatal suture) was constructed. A finite element analysis model was constructed based on meshwork. After the yield strength of the palatal suture was set, an increasing expansion force (0–500 N) was applied within 140 ms to calculate the time–load curve, which mimicked nonsurgical bone expansion (model A). The same method was used to evaluate the fracture process, time and stress distribution of the palatal suture in maxillary lateral osteotomy-assisted (model B) and LeFort osteomy I (LFIO)-assisted expansion of the maxillary arch (model C). Results Compared with model A, the palatal suture of model B and model C showed a faster stress accumulation rate and shorter fracture time, and the fracture time of model B and model C was almost identical. Compared with model A, we discovered that model B and model C showed greater lateral extension of the maxilla, and the difference was reflected mainly in the lower part of the maxilla, and there was no difference between model B and model C in lateral extension of the maxilla. Conclusions Compared with arch expansion using nonsurgical assistance (model A), arch expansion using maxillary lateral wall-osteotomy (model B) or LFIO had a faster rate of stress accumulation, shorter time of fracture of the palatal suture and increased lateral displacement of the maxilla. Compared with arch expansion using LFIO (model C), arch expansion using lateral osteotomy (model B) had a similar duration of palatal suture rupture and lateral maxillary extension. In view of the trauma and serious complications associated with LFIO, maxillary lateral wall-osteotomy could be considered a substitute for LFIO.


2021 ◽  
Author(s):  
Chuansong S. He

Abstract The north-south seismic zone (NSSZ) is a destructive zone of large-scale earthquakes in China, and the earthquake mechanism associated with deep structures remains unclear. Previous studies have indicated that lithospheric delamination or absence of lithospheres in the western part of the NSSZ may facilitate the eastern extrusion of the Tibetan Plateau and lead to stress accumulation and release. However, the deep process of lithospheric delamination needs to be further clarified. In this study, I collect abundant high-quality teleseismic data recorded by permanent seismic stations and perform common conversion point (CCP) stacking of receiver functions in the north part of the NSSZ. The results show that lithospheric delamination might result in the splitting 660 km discontinuity and a thickening region of the mantle transition zone (MTZ).


MAUSAM ◽  
2021 ◽  
Vol 71 (4) ◽  
pp. 699-708
Author(s):  
DEBNATH PAPIYA ◽  
SEN SANJAY

There are seismically active regions consisting of fault system with a number of neighbouring earthquake faults. A movement across any one of them may affect the nature of stress accumulation near the others. Mathematical models may be developed to study these interactions and the pattern of interseismic stresses during the aseismic period in between two consecutive seismic events. In this paper, the lithosphere-asthenosphere system is being represented by a linear viscoelastic half space. The material of the half space is expected to possess the properties of both Maxwell and Kelvin type materials. It is assumed that the system is under a steady shear stress generated by some tectonic phenomena. For obtaining the solution for displacement, strain and stresses from the resulting boundary value problem, Integral transform, Green’s function techenique and correspondence principle have been used. Appropriate estimates of the model parameters were used in carrying out the numerical computations for investigating the nature of interactions among the faults.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wei He ◽  
Fangjun Ye ◽  
Jie Lin ◽  
Qian Wang ◽  
Qingshui Xie ◽  
...  

AbstractThere are plenty of issues need to be solved before the practical application of Li- and Mn-rich cathodes, including the detrimental voltage decay and mediocre rate capability, etc. Element doping can effectively solve the above problems, but cause the loss of capacity. The introduction of appropriate defects can compensate the capacity loss; however, it will lead to structural mismatch and stress accumulation. Herein, a three-in-one method that combines cation–polyanion co-doping, defect construction, and stress engineering is proposed. The co-doped Na+/SO42− can stabilize the layer framework and enhance the capacity and voltage stability. The induced defects would activate more reaction sites and promote the electrochemical performance. Meanwhile, the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling. Consequently, the modified sample retains a capacity of 273 mAh g−1 with a high-capacity retention of 94.1% after 100 cycles at 0.2 C, and 152 mAh g−1 after 1000 cycles at 2 C, the corresponding voltage attenuation is less than 0.907 mV per cycle.


2021 ◽  
Vol 22 (19) ◽  
pp. 10680
Author(s):  
Zarina Akhtyamova ◽  
Tatiana Arkhipova ◽  
Elena Martynenko ◽  
Tatyana Nuzhnaya ◽  
Ludmila Kuzmina ◽  
...  

An ABA-deficient barley mutant (Az34) and its parental cultivar (Steptoe) were compared. Plants of salt-stressed Az34 (100 mmol m−3 NaCl for 10 days) grown in sand were 40% smaller than those of “Steptoe”, exhibited a lower leaf relative water content and lower ABA concentrations. Rhizosphere inoculation with IB22 increased plant growth of both genotypes. IB22 inoculation raised ABA in roots of salt-stressed plants by supplying ABA exogenously and by up-regulating ABA synthesis gene HvNCED2 and down-regulating ABA catabolic gene HvCYP707A1. Inoculation partially compensated for the inherent ABA deficiency of the mutant. Transcript abundance of HvNCED2 and related HvNCED1 in the absence of inoculation was 10 times higher in roots than in shoots of both mutant and parent, indicating that ABA was mainly synthesized in roots. Under salt stress, accumulation of ABA in the roots of bacteria-treated plants was accompanied by a decline in shoot ABA suggesting bacterial inhibition of ABA transport from roots to shoots. ABA accumulation in the roots of bacteria-treated Az34 was accompanied by increased leaf hydration, the probable outcome of increased root hydraulic conductance. Thereby, we tested the hypothesis that the ability of rhizobacterium (Bacillus subtilis IB22) to modify responses of plants to salt stress depends on abscisic acid (ABA) accumulating in roots.


2021 ◽  
pp. 104323
Author(s):  
Pénélope Tarapacki ◽  
Lisa Bjerregaard Jørgensen ◽  
Jesper Givskov Sørensen ◽  
Mads Kuhlmann Andersen ◽  
Herve Colinet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document