Central Limit Theorems in the Area of Large Deviations for Some Dependent Random Variables.

1982 ◽  
Author(s):  
Narasinga Rao Chaganty ◽  
J. Sethuraman
2019 ◽  
Vol 56 (2) ◽  
pp. 145-153
Author(s):  
Khurelbaatar Gonchigdanzan

Abstract Let {Xn: n ≧ 1} be a sequence of dependent random variables and let {wnk: 1 ≦ k ≦ n, n ≧ 1} be a triangular array of real numbers. We prove the almost sure version of the CLT proved by Peligrad and Utev [7] for weighted partial sums of mixing and associated sequences of random variables, i.e.


1997 ◽  
Vol 13 (3) ◽  
pp. 353-367 ◽  
Author(s):  
Robert M. de Jong

This paper presents central limit theorems for triangular arrays of mixingale and near-epoch-dependent random variables. The central limit theorem for near-epoch-dependent random variables improves results from the literature in various respects. The approach is to define a suitable Bernstein blocking scheme and apply a martingale difference central limit theorem, which in combination with weak dependence conditions renders the result. The most important application of this central limit theorem is the improvement of the conditions that have to be imposed for asymptotic normality of minimization estimators.


1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


Sign in / Sign up

Export Citation Format

Share Document