Bivariate Exponential and Geometric Autoregressive and Autoregressive Moving Average Models.

1986 ◽  
Author(s):  
H. W. Block ◽  
N. A. Langberg ◽  
D. S. Stoffer
1988 ◽  
Vol 20 (4) ◽  
pp. 798-821 ◽  
Author(s):  
H. W. Block ◽  
N. A. Langberg ◽  
D. S. Stoffer

We present autoregressive (AR) and autoregressive moving average (ARMA) processes with bivariate exponential (BE) and bivariate geometric (BG) distributions. The theory of positive dependence is used to show that in various cases, the BEAR, BGAR, BEARMA, and BGARMA models consist of associated random variables. We discuss special cases of the BEAR and BGAR processes in which the bivariate processes are stationary and have well-known bivariate exponential and geometric distributions. Finally, we fit a BEAR model to a real data set.


1988 ◽  
Vol 20 (04) ◽  
pp. 798-821
Author(s):  
H. W. Block ◽  
N. A. Langberg ◽  
D. S. Stoffer

We present autoregressive (AR) and autoregressive moving average (ARMA) processes with bivariate exponential (BE) and bivariate geometric (BG) distributions. The theory of positive dependence is used to show that in various cases, the BEAR, BGAR, BEARMA, and BGARMA models consist of associated random variables. We discuss special cases of the BEAR and BGAR processes in which the bivariate processes are stationary and have well-known bivariate exponential and geometric distributions. Finally, we fit a BEAR model to a real data set.


Sign in / Sign up

Export Citation Format

Share Document