Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study,

1995 ◽  
Author(s):  
Jerry R. Barker ◽  
Greg A. Baumgardner ◽  
Jeffrey J. Lee ◽  
J. C. McFarlane
2015 ◽  
Vol 355 ◽  
pp. 124-140 ◽  
Author(s):  
A. Noormets ◽  
D. Epron ◽  
J.C. Domec ◽  
S.G. McNulty ◽  
T. Fox ◽  
...  

2021 ◽  
Author(s):  
Lin Xu ◽  
Yongjun Shi ◽  
Wanjie Lv ◽  
Zhengwen Niu ◽  
Ning Yuan ◽  
...  

<p>Forest ecosystem has a high carbon sequestration capacity and plays a crucial role in maintaining global carbon balance and climate change. Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mechanism, has attracted more attentions in the global carbon cycle and the regulation of atmospheric CO<sub>2</sub>. Therefore, it is of practical significance to investigate the PhytOC accumulation in forest ecosystems. Previous studies have mostly focused on the estimation of the content and storage of PhytOC, while there were still few studies on how the management practices affect the PhytOC content. Here, this study focused on the effects of four management practices (compound fertilization, silicon fertilization, cut and control) on the increase of phytolith and PhytOC in Moso bamboo forests. We found that silicon fertilization had a greater potential to significantly promote the capacity of carbon sequestration in Moso bamboo forests. this finding positively corresponds recent studies that the application of silicon fertilizers (e.g., biochar) increase the Si uptake<strong><sup>1</sup></strong> to promote phytolith accumulation and its PhytOC sequestration in the plant-soil system<strong><sup>2</sup></strong>. Of course, the above-mentioned document<strong><sup>2</sup></strong> also had their own shortcomings, i.e., the experimental research time was not long, lacking long-term follow-up trial and the bamboo forest parts were also limited, so that the test results lack certain reliability. We have set up a long-term experiment plot to study the effects of silicon fertilizer on the formation and stability of phytolith and PhytOC in Moso bamboo forests. But anyway, different forest management practices, especially the application of high-efficiency silicon-rich fertilizers<strong><sup>1</sup></strong>, may be an effective way to increase the phytolith and PhytOC storage in forest ecosystems, and thereby improve the long-term CO<sub>2 </sub>sequestration capacity of forest ecosystems. Research in this study provides a good "forest plan" to achieve their national voluntary emission reduction commitments and achieves carbon neutrality goals for all over the world.</p><p>Refences:</p><p><sup>1</sup>Li et al., 2019. Plant and soil, 438(1-2), pp.187-203.</p><p><sup>2</sup>Huang et al., 2020, Science of The Total Environment, 715, p.136846.</p>


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 880 ◽  
Author(s):  
Pan ◽  
Sun ◽  
Ouyang ◽  
Zang ◽  
Rao ◽  
...  

Carbon density is an important indicator of carbon sequestration capacity in forest ecosystems. We investigated the vegetation carbon density of Pinus massoniana Lamb. forest in the Jiangxi Province. Based on plots investigation and measurement of the carbon content of the samples, the influencing factors and spatial variation of vegetation carbon density (including the tree layer, understory vegetation layer and litter layer) were analysed. The results showed that the average vegetation carbon density value of P. massoniana forest was 52 Mg·ha−1. The vegetation carbon density was significantly (p < 0.01) and positively correlated with the stand age, mean annual precipitation, elevation and stand density and negatively correlated with the slope and mean annual temperature. Forest management had a significant impact on vegetation carbon density. To manage P. massoniana forest for carbon sequestration as the primary objective, near-natural forest management theory should be followed, e.g., replanting broadleaf trees. These measures would promote positive succession and improve the vegetation carbon sequestration capacity of forests. The results from the global Moran’s I showed that the vegetation carbon density of P. massoniana forest had significant positive spatial autocorrelation. The results of local Moran’s I showed that the high-high spatial clusters were mainly distributed in the southern, western and eastern parts of the province. The low-low spatial clusters were distributed in the Yushan Mountains and in the northern part of the province. The fitting results of the semivariogram models showed that the spherical model was the best fitting model for vegetation carbon density. The ratio of nugget to sill was 0.45, indicating a moderate spatial correlation of carbon density. The vegetation carbon density based on kriging spatial interpolation was mainly concentrated in the range of 32.5–69.8 Mg·ha−1. The spatial distribution of vegetation carbon density regularity was generally low in the middle region and high in the peripheral region, which was consistent with the terrain characteristics of the study area.


2011 ◽  
Vol 44 (10) ◽  
pp. 764-773 ◽  
Author(s):  
Keigo Akimoto ◽  
Toshimasa Tomoda ◽  
Kiyotaka Tahara ◽  
Toshinori Kojima

2012 ◽  
Vol 427 ◽  
pp. 203-207
Author(s):  
Yu Shu Cui ◽  
Hong Ling Shao ◽  
Li Yan Ma

The forest carbon sinks play an important role in controlling the Greenhouse Gas emissions. The project management of wood carbon sequestration materials will be helpful to attract more and more enterprises to step into forestation, reforestation and technology development for improvement of forest management. That will create a sustainable situation that governments, NGO and corporations join together. Based on the domestic and foreign literature, the paper sorts out the current literature in the direction of forest carbon sequestration managements are from five aspects such as, carbon policy, carbon sequestration, carbon conservation, carbon substitution, carbon benefits. Based on this, the paper puts forward the policy and the long-term objectives of wood carbon sequestration materials should be integration of the implementation.


Sign in / Sign up

Export Citation Format

Share Document