vegetation carbon
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 67)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 13 (23) ◽  
pp. 4926
Author(s):  
Minzhe Fang ◽  
Guoxin Si ◽  
Qiang Yu ◽  
Huaguo Huang ◽  
Yuan Huang ◽  
...  

Achieving carbon neutrality is a necessary effort to rid humanity of a catastrophic climate and is a goal for China in the future. Ecological space plays an important role in the realization of carbon neutrality, but the relationship between the structure of vegetation ecological space and vegetation carbon sequestration capacity has been the focus of research. In this study, we extracted the base data from MODIS products and other remote sensing products, and then combined them with the MCR model to construct a vegetation ecospatial network in the Yellow River Basin in 2018. Afterward, we calculated the topological indicators of ecological nodes in the network and analyzed the relationship between the carbon sequestration capacity (net biome productivity) of ecological nodes and these topological indicators in combination with the Biome-BGC model. The results showed that there was a negative linear correlation between the betweenness centrality of forest nodes and their carbon sequestration capacity in the Yellow River Basin (p < 0.05, R2 = 0.59). On the other hand, there was a positive linear correlation between the clustering coefficient of grassland nodes and their carbon sequestration capacity (p < 0.01, R2 = 0.49). In addition, we briefly evaluated the vegetation ecospatial network in the Yellow River BASIN and suggested its optimization direction under the background of carbon neutrality in the future. Increasing the carbon sequestration capacity of vegetation through the construction of national ecological projects is one of the ways to achieve carbon neutrality, and this study provides a reference for the planning of future national ecological projects in the Yellow River Basin. Furthermore, this is also a case study of the application of remote sensing in vegetation carbon budgeting.


2021 ◽  
Author(s):  
Shanlin Tong ◽  
Weiguang Wang ◽  
Jie Chen ◽  
Chong-Yu Xu ◽  
Hisashi Sato ◽  
...  

Abstract. Documenting year-to-year variations in carbon-sequestration potential in terrestrial ecosystems is crucial for the determination of carbon dioxide (CO2) emissions. However, the magnitude, pattern and inner biomass partitioning of carbon-sequestration potential, and the effect of the changes in climate and CO2 on inner carbon stocks, remain poorly quantified. Herein, we use a spatially explicit individual based-dynamic global vegetation model to investigate the influences of the changes in climate and CO2 on the enhanced carbon-sequestration potential of vegetation. The modelling included a series of factorial simulations using the CRU dataset from 1916 to 2015. The results show that CO2 predominantly leads to a persistent and widespread increase in above-ground vegetation biomass carbon-stocks (AVBC) and below-ground vegetation biomass carbon-stocks (BVBC). Climate change appears to play a secondary role in carbon-sequestration potential. Importantly, with the mitigation of water stress, the magnitude of the above- and below-ground responses in vegetation carbon-stocks gradually increases, and the ratio between AVBC and BVBC increases to capture CO2 and sunlight. Changes in the pattern of vegetation carbon storage was linked to regional limitations in water, which directly weakens and indirectly regulates the response of potential vegetation carbon-stocks to a changing environment. Our findings differ from previous modelling evaluations of vegetation that ignored inner carbon dynamics and demonstrates that the long-term trend in increased vegetation biomass carbon-stocks is driven by CO2 fertilization and temperature effects that are controlled by water limitations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Uttam Kumar Sahoo ◽  
Om Prakash Tripathi ◽  
Arun Jyoti Nath ◽  
Sourabh Deb ◽  
Dhruba Jyoti Das ◽  
...  

In the modern era, rapid anthropogenic activities in the vicinity of the Himalayas disturb the carbon sequestration potential resulting in climate change. For the first time, this study estimates the biomass and carbon storage potential of Northeast India’s diverse land uses through a biomass estimation model developed for this region. The mean tree density in tropical, subtropical, and temperate forests was 539, 554, and 638 trees ha−1, respectively. The mean vegetation carbon stock was the highest for temperate forests (122.09 Mg C ha−1), followed by subtropical plantations (115.45 Mg C ha−1), subtropical forests (106.01 Mg C ha−1), tropical forests (105.33 Mg C ha−1), tropical plantations (93.00 Mg C ha−1), and temperate plantations (50.10 Mg C ha−1). Among the forests, the mean soil organic carbon (SOC) stock up to 45 cm depth was the highest for tropical forests (72.54 Mg C ha−1), followed by temperate forests (63.4 Mg C ha−1) and subtropical forests (42.58 Mg C ha−1). A strong relationship between the tree basal area and biomass carbon storage was found for all land-use types. The land-use transformation from agriculture to agroforestry, and grassland to plantations increased both vegetation carbon (VC) and SOC stocks. The corresponding increase in VC and SOC was 40.80 and 43.34 Mg C ha−1, respectively, in the former, and 83.18 and 97.64 Mg C ha−1 in the latter. In general, the landscape-level estimates were drawn from site-level estimates in a given land-use type, and therefore, the corresponding values might be overestimated. Nevertheless, the results provide baseline information on carbon stock which may serve as a reference for devising appropriate land-use change policies in the region.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Haiyan Li ◽  
Yi Qu ◽  
Xingyu Zeng ◽  
Hongqiang Zhang ◽  
Ling Cui ◽  
...  

AbstractLarge-scale human activities especially the destruction of forest land, grassland, and unused land result in a large amount of carbon release into the atmosphere and cause drastic changes in land use/cover in the Sanjiang Plain. As a climate change-sensitive and ecologically vulnerable area, the Sanjiang Plain ecosystem’s carbon cycle is affected by significant climate change. Therefore, it is important that studying the impact of the changes in land use/cover and climate on vegetation carbon storage in the Sanjiang Plain. Remote sensing, temperature, and precipitation data in four periods from 2001 to 2015 are used as bases in conducting an analysis of land use/cove types and spatio-temporal variation of vegetation carbon density and carbon storage in growing season using model and related analysis methods. Moreover, the impact of land use/cover change and climate change on vegetation carbon density and carbon storage is discussed. The findings are as follows. (1) Cultivated land in the Sanjiang Plain increased, while forest land, grassland and unused land generally decreased. (2) Vegetation carbon density increased, in which the average carbon density of cultivated land, grassland, and unused land varied insignificantly, while that of forest land increased continuously from 4.18 kg C/m2 in 2001 to 7.65 kg C/m2 in 2015. Vegetation carbon storage increased from 159.18 Tg C in 2001 to 256.83 Tg C in 2015, of which vegetation carbon storage of forest land contributed 94% and 97%, respectively. (3) Conversion of land use/cover types resulted in a 22.76-TgC loss of vegetation carbon storage. Although the forest land area decreased by 3389.5 km2, vegetation carbon storage in the research area increased by 97.65 Tg C owing to the increase of forest carbon density. (4) Pixel-by-pixel analysis showed that vegetation carbon storage in the majority of the areas of the Sanjiang Plain are negatively correlated with temperature and positively correlated with precipitation. The results showed that changes of land use/cover types and vegetation carbon density directly lead to a change in vegetation carbon storage, with the change of forest vegetation carbon density being the main driver affecting vegetation carbon storage variation. The increase of temperature mainly suppresses the vegetation carbon density, and the increase of precipitation mainly promotes it.


Sign in / Sign up

Export Citation Format

Share Document