Neural Network Based Adaptive Control of Uncertain and Unknown Nonlinear Systems

2001 ◽  
Author(s):  
Anthony J. Calise
2021 ◽  
pp. 1-1
Author(s):  
Duc M. Le ◽  
Max L. Greene ◽  
Wanjiku A. Makumi ◽  
Warren E. Dixon

2020 ◽  
Vol 42 (15) ◽  
pp. 2833-2856
Author(s):  
Ahmed Elkenawy ◽  
Ahmad M El-Nagar ◽  
Mohammad El-Bardini ◽  
Nabila M El-Rabaie

This paper proposes an observer-based adaptive control for unknown nonlinear systems using an adaptive dynamic programming (ADP) algorithm. First, a diagonal recurrent neural network (DRNN) observer is proposed to estimate the unknown dynamics of the nonlinear system states. The proposed neural network offers a simpler structure with deeper memory and guarantees the faster convergence. Second, a neural controller is constructed via ADP method using the observed states to get the optimal control. The optimal control law is determined based on the new structure of the critic network, which is performed using the DRNN. The learning algorithm for the proposed DRNN observer-based adaptive control is developed based on the Lyapunov stability theory. Simulation results and hardware-in-the-loop results indicate the robustness of the proposed ADP to respond the system uncertainties and external disturbances compared with other existing schemes.


2012 ◽  
Vol 22 (01) ◽  
pp. 37-50 ◽  
Author(s):  
CHIH-MIN LIN ◽  
ANG-BUNG TING ◽  
CHUN-FEI HSU ◽  
CHAO-MING CHUNG

Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort.


Sign in / Sign up

Export Citation Format

Share Document