dynamic neural network
Recently Published Documents


TOTAL DOCUMENTS

371
(FIVE YEARS 65)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 870
Author(s):  
Mohammad Alsarayreh ◽  
Omar Mohamed ◽  
Mustafa Matar

Accurate simulations of gas turbines’ dynamic performance are essential for improvements in their practical performance and advancements in sustainable energy production. This paper presents models with extremely accurate simulations for a real dual-fuel gas turbine using two state-of-the-art techniques of neural networks: the dynamic neural network and deep neural network. The dynamic neural network has been realized via a nonlinear autoregressive network with exogenous inputs (NARX) artificial neural network (ANN), and the deep neural network has been based on a convolutional neural network (CNN). The outputs selected for simulations are: the output power, the exhausted temperature and the turbine speed or system frequency, whereas the inputs are the natural gas (NG) control valve, the pilot gas control valve and the compressor variables. The data-sets have been prepared in three essential formats for the training and validation of the networks: normalized data, standardized data and SI units’ data. Rigorous effort has been carried out for wide-range trials regarding tweaking the network structures and hyper-parameters, which leads to highly satisfactory results for both models (overall, the minimum recorded MSE in the training of the MISO NARX was 6.2626 × 10−9 and the maximum MSE that was recorded for the MISO CNN was 2.9210 × 10−4, for more than 15 h of GT operation). The results have shown a comparable satisfactory performance for both dynamic NARX ANN and the CNN with a slight superiority of NARX. It can be newly argued that the dynamic ANN is better than the deep learning ANN for the time-based performance simulation of gas turbines (GTs).


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3659
Author(s):  
Yiqi Liu ◽  
Longhua Yuan ◽  
Dong Li ◽  
Yan Li ◽  
Daoping Huang

Proper monitoring of quality-related but hard-to-measure effluent variables in wastewater plants is imperative. Soft sensors, such as dynamic neural network, are widely used to predict and monitor these variables and then to optimize plant operations. However, the traditional training methods of dynamic neural network may lead to poor local optima and low learning rates, resulting in inaccurate estimations of parameters and deviation of predictions. This study introduces a general Kalman-Elman method to monitor the effluent qualities, such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN). The method couples an Elman neural network with the square-root unscented Kalman filter (SR-UKF) to build a soft-sensor model. In the proposed methodology, adaptive noise estimation and weight constraining are introduced to estimate the unknown noise and constrain the parameter values. The main merits of the proposed approach include the following: First, improving the mapping accuracy of the model and overcoming the underprediction phenomena in data-driven process monitoring; second, implementing the parameter constraint and avoid large weight values; and finally, providing a new way to update the parameters online. The proposed method is verified from a dataset of the University of California database (UCI database). The obtained results show that the proposed soft-sensor model achieved better prediction performance with root mean square error (RMSE) being at least 50% better than the Elman network based on back propagation through the time algorithm (Elman-BPTT), Elman network based on momentum gradient descent algorithm (Elman-GDM), and Elman network based on Levenberg-Marquardt algorithm (Elman-LM). This method can give satisfying prediction of quality-related effluent variables with the largest correlation coefficient (R) for approximately 0.85 in output suspended solids (SS-S) and 0.95 in BOD and COD.


2021 ◽  
Vol 11 (24) ◽  
pp. 12078
Author(s):  
Daniel Turner ◽  
Pedro J. S. Cardoso ◽  
João M. F. Rodrigues

Learning to recognize a new object after having learned to recognize other objects may be a simple task for a human, but not for machines. The present go-to approaches for teaching a machine to recognize a set of objects are based on the use of deep neural networks (DNN). So, intuitively, the solution for teaching new objects on the fly to a machine should be DNN. The problem is that the trained DNN weights used to classify the initial set of objects are extremely fragile, meaning that any change to those weights can severely damage the capacity to perform the initial recognitions; this phenomenon is known as catastrophic forgetting (CF). This paper presents a new (DNN) continual learning (CL) architecture that can deal with CF, the modular dynamic neural network (MDNN). The presented architecture consists of two main components: (a) the ResNet50-based feature extraction component as the backbone; and (b) the modular dynamic classification component, which consists of multiple sub-networks and progressively builds itself up in a tree-like structure that rearranges itself as it learns over time in such a way that each sub-network can function independently. The main contribution of the paper is a new architecture that is strongly based on its modular dynamic training feature. This modular structure allows for new classes to be added while only altering specific sub-networks in such a way that previously known classes are not forgotten. Tests on the CORe50 dataset showed results above the state of the art for CL architectures.


Author(s):  
Yujie Li ◽  
Ming Zhang ◽  
Yu Zhu ◽  
Xin Li ◽  
Leijie Wang ◽  
...  

To satisfy the increasingly demanding requirements in throughput and accuracy, more lightweight structures and a higher control bandwidth are highly desirable in next-generation motion stages. However, these requirements lead to a more flexible deformation, causing the estimation accuracy of the point of interest (POI) displacement to be guaranteed under the rigid-body assumption. In this study, a soft sensor model is constructed using a dynamic neural network (DNN) to estimate the POI displacement. This model can reflect the dynamic characteristics of the POI and realize accurate estimations. Moreover, a method combining stepwise and weight methods is proposed to analyze the influence of different DNNs, and a performance measure is presented to evaluate the soft sensor model. In the simulation, the DNN with the hidden feedbacks is proved to be the most suitable soft sensor model. The relative error and correlation coefficient obtained were less than 2% and 0.9998, respectively, during training and 5% and 0.9989, respectively, during testing. Compared with the data-driven model using the least-squares method, the proposed method exhibits a higher precision, and the relative error is within the setting range using the proposed performance measure.


Sign in / Sign up

Export Citation Format

Share Document