The Use of Dipolar Coupled Nuclear Spins for Quantum Information Processing and Quantum Computation

2004 ◽  
Author(s):  
David G. Cory ◽  
Chandrasekhar Ramanathan ◽  
Timothy F. Havel
2001 ◽  
Vol 15 (27) ◽  
pp. 1259-1264 ◽  
Author(s):  
M. ANDRECUT ◽  
M. K. ALI

The preparation of a quantum register in an arbitrary superposed quantum state is an important operation for quantum computation and quantum information processing. Here, we present an efficient algorithm which requires a polynomial number of elementary operations for initializing the amplitude distribution of a quantum register.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850009 ◽  
Author(s):  
ZhuoYu Shan ◽  
Yong Zhang

Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.


2004 ◽  
Vol 213 ◽  
pp. 237-244
Author(s):  
Paul Davies

The race to build a quantum computer has led to a radical re-evaluation of the concept of information. In this paper I conjecture that life, defined as an information processing and replicating system, may be exploiting the considerable efficiency advantages offered by quantum computation, and that quantum information processing may dramatically shorten the odds for life originating from a random chemical soup. The plausibility of this conjecture rests, however, on life somehow circumventing the decoherence effects of the environment. I offer some speculations on ways in which this might happen.


2002 ◽  
Vol 89 (20) ◽  
Author(s):  
Michael N. Leuenberger ◽  
Daniel Loss ◽  
M. Poggio ◽  
D. D. Awschalom

2006 ◽  
Vol 4 ◽  
pp. 669-673 ◽  
Author(s):  
S. K. Özdemir ◽  
A. Miranowicz ◽  
T. Ota ◽  
G. Yusa ◽  
N. Imoto ◽  
...  

2010 ◽  
Vol 08 (01n02) ◽  
pp. 149-159 ◽  
Author(s):  
RADU IONICIOIU ◽  
WILLIAM J. MUNRO

Large-scale quantum information processing and distributed quantum computation require the ability to perform entangling operations on a large number of qubits. We describe a new photonic module which prepares, deterministically, photonic cluster states using an atom in a cavity as an ancilla. Based on this module, we design a network for constructing 2D cluster states and then we extend the architecture to 3D topological cluster states. Advantages of our design include a passive switching mechanism and the possibility of using global control pulses for the atoms in the cavity. The architecture described here is well-suited for integrated photonic circuits on a chip and could be used as a basis of a future quantum optical processor or in a quantum repeater node.


Sign in / Sign up

Export Citation Format

Share Document