nanoscale device
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Shardul Mukim ◽  
J. O’Brien ◽  
Maryam Abarashi ◽  
Mauro S Ferreira ◽  
Claudia Gomes da Rocha

Abstract Obtaining conductance spectra for a concentration of disordered impurities distributed over a nanoscale device with sensing capabilities is a well-defined problem. However, to do this inversely, i.e., extracting information about the scatters from the conductance spectrum alone, is not an easy task. In the presence of impurities, even advanced techniques of inversion can become particularly challenging. This article extends the applicability of a methodology we proposed capable of extracting composition information about a nanoscale sensing device using the conductance spectrum. The inversion tool decodes the conductance spectrum to yield the concentration and nature of the disorders responsible for conductance fluctuations in the spectra. We present the method for simple one-dimensional systems like an electron gas with randomly distributed delta functions and a linear chain of atoms. We prove the generality and robustness of the method using materials with complex electronic structures like hexagonal boron nitride, graphene nanoribbons, and carbon nanotubes. We also go on to probe distribution of disorders on the sublattice structure of the materials using the proposed inversion tool.


Author(s):  
Kruti Wohra ◽  
Arun Kumar Diwakar ◽  
Anant G. Kulkarni

Semiconductor nanowires guarantee to give the structure squares to another age of nanoscale electronic and optoelectronic gadgets and display novel electronic and optical properties inferable from their special underlying one-dimensionality and conceivable quantum confinement impacts in two measurements. With an expansive choice of creations and band structures, these one-dimensional semiconductor nanostructures are viewed as the basic segments in a wide scope of potential nanoscale device applications. This review paper explains the basic properties showed by semiconductor nanowires. Novel properties including nanowire miniature hole lasing, phonon transport, interfacial security, and synthetic detecting are reviewed.


Nano Today ◽  
2021 ◽  
Vol 39 ◽  
pp. 101206
Author(s):  
Filip Gucmann ◽  
James W. Pomeroy ◽  
Martin Kuball

2021 ◽  
Author(s):  
M. Ajmal Khan ◽  
Yasuaki Ishikawa

Stacking fault free and planar defects (twin plane) free catalyzed Si nanowires (Si NWs) is essential for the carrier transport in the nanoscale devices applications. In this chapter, In-catalyzed, vertically aligned and cone-shaped Si NWs arrays were grown by using vapor–liquid–solid (VLS) mode on Si (111) substrates. We have successfully controlled the verticality and (111)-orientation of Si NWs as well as scaled down the diameter to 18 nm. The density of Si NWs was also enhanced from 2.5 μm−2 to 70 μm−2. Such vertically aligned, (111)-oriented p-type Si NWs are very important for the nanoscale device applications including Si NWs/c-Si tandem solar cells and p-Si NWs/n-InGaZnO Heterojunction LEDs. Next, the influence of substrate growth temperature (TS), cooling rate (∆TS/∆𝑡) on the formation of planar defects, twining along [112] direction and stacking fault in Si NWs perpendicular to (111)-orientation were deeply investigated. Finally, one simple model was proposed to explain the formation of stacking fault, twining of planar defects in perpendicular direction to the axial growth direction of Si NWs. When the TS was decreased from 600°C with the cooling rate of 100°C/240 sec to room temperature (RT) after Si NWs growth then the twin planar defects perpendicular to the substrate and along different segments of (111)-oriented Si NWs were observed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Isaac Alcón ◽  
Raúl Santiago ◽  
Jordi Ribas-Arino ◽  
Mercè Deumal ◽  
Ibério de P. R. Moreira ◽  
...  

AbstractControlling the electronic states of molecules is a fundamental challenge for future sub-nanoscale device technologies. π-conjugated bi-radicals are very attractive systems in this respect as they possess two energetically close, but optically and magnetically distinct, electronic states: the open-shell antiferromagnetic/paramagnetic and the closed-shell quinoidal diamagnetic states. While it has been shown that it is possible to statically induce one electronic ground state or the other by chemical design, the external dynamical control of these states in a rapid and reproducible manner still awaits experimental realization. Here, via quantum chemical calculations, we demonstrate that in-plane uniaxial strain of 2D covalently linked arrays of radical units leads to smooth and reversible conformational changes at the molecular scale that, in turn, induce robust transitions between the two kinds of electronic distributions. Our results pave a general route towards the external control, and thus technological exploitation, of molecular-scale electronic states in organic 2D materials.


MRS Bulletin ◽  
2021 ◽  
Author(s):  
Jijie Huang ◽  
Weiwei Li ◽  
Hao Yang ◽  
Judith L. MacManus-Driscoll

AbstractSelf-assembled nanocomposite thin films couple two materials into a single film, typically, in the form of vertically aligned nanopillars embedded in a matrix film. High-density vertical heterointerfaces provide a great platform for engineering new physical properties and novel multifunctionalities, as well as for nanoscale device integration. Tremendous research efforts have been devoted to developing different nanocomposite systems. In this article, we summarize recent progress on vertically aligned nanocomposite thin films for enhanced functionalities such as ferroelectricity, tunable magnetoresistance, multiferroicity, dielectricity, magnetic anisotropy, perpendicular exchange bias, novel electrical/ionic properties, interfacial conduction, and resistive switching. Using specific examples, we discuss how and why the fundamental physical properties can be significantly tuned/improved in vertically aligned nanocomposites. Finally, we propose future research directions to achieve further enhanced performance as well as practical devices.


2021 ◽  
Author(s):  
Denis Alexander Therien ◽  
Danielle McRae ◽  
Claire Mangeney ◽  
Nordin Felidj ◽  
Francois Lagugné-Labarthet

Surface plasmon-mediated chemical reactions are of great interest for a variety of applications ranging from micro- and nanoscale device fabrication to chemical reactions of societal interest for hydrogen production or...


2020 ◽  
Vol 30 (15) ◽  
pp. 2050222
Author(s):  
Li Luo ◽  
Zhekang Dong ◽  
Xiaofang Hu ◽  
Lidan Wang ◽  
Shukai Duan

The nanoscale implementations of ternary logic circuits are particularly attractive because of high information density and operation speed that can be achieved by using emerging memristor technologies. Memristor is a nanoscale device with nonvolatility and adjustable multilevel states, which creates an intriguing opportunity for the implementation of ternary logic operations. This paper proposes a novel memristor-based design for stateful ternary logic, including AND, OR, NOT, NAND, NOR, and COPY operations. In the proposed memristor ternary logic (MTL) design, the resistance of memristor is the only logic state variable for representing the input and output. By sensing the value of the input memristors, the resistance of the output memristor changes accordingly. Furthermore, the MTL gates are not only capable of performing logic operations, but also storing logic values. To illustrate the potential of the methodology, a single-input-three-output ternary decoder is designed by using the proposed ternary logic circuits. Simulation results verify the effectiveness of the presented design.


2020 ◽  
Author(s):  
Ilka Kriegel ◽  
Michele Ghini ◽  
Emanuil Sashev Yanev ◽  
Christoph Kastl ◽  
Adam W. Jansons ◽  
...  

We report a new localized and electrodeless charge injection scheme that quasi-permanently modifies monolayer (1L-)MoS2 doping levels to extents competing with electrostatic gating. The key innovation is to use Sn-doped In2O3 (ITO) nanocrystals (NCs) as contactless light-driven charge injection sources triggered solely by light. Each nanocrystal can store and transfer multiple charges after ultraviolet illumination within the diffraction limited laser spot. This results in reductions in carrier density in the underlying 1L-MoS2 up to 1×1013 cm-2 and is observed throughout the extent of the 2D material flake. The long-distance charge separation proliferates up to 40 µm away from the localized charge injection and persists over months. The apparent driving force for carrier relocation is the initial inhomogeneous electronic landscape of the 2D material. These studies demonstrate a novel all-optically controlled tool to locally inject carriers with sub-micrometer precision. This new ability allows us to extract important aspects of inhomogeneity in 2D materials undisturbed by bulky electronic contacts and indicates that local 2D material manipulation can serve as a key element for novel nanoscale device design.


Sign in / Sign up

Export Citation Format

Share Document