Antibody Induced Perturbation-A New Method to Identify Pathways in Breast Cancer Progression, Invasion and Metastasis

2006 ◽  
Author(s):  
Michael D. Johnson
F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 274 ◽  
Author(s):  
Manoj Kumar Jena ◽  
Jagadeesh Janjanam

Evidence is increasing on the crucial role of the extracellular matrix (ECM) in breast cancer progression, invasion and metastasis with almost all mortality cases owing to metastasis. The epithelial-mesenchymal transition is the first signal of metastasis involving different transcription factors such as Snail, TWIST, and ZEB1. ECM remodeling is a major event promoting cancer invasion and metastasis; where matrix metalloproteinases (MMPs) such as MMP-2, -9, -11, and -14 play vital roles degrading the matrix proteins for cancer spread. The β-D mannuronic acid (MMP inhibitor) has anti-metastatic properties through inhibition of MMP-2, and -9 and could be a potential therapeutic agent. Besides the MMPs, the enzymes such as LOXL2, LOXL4, procollagen lysyl hydroxylase-2, and heparanase also regulate breast cancer progression. The important ECM proteins like integrins (b1-, b5-, and b6- integrins), ECM1 protein, and Hic-5 protein are also actively involved in breast cancer development. The stromal cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and adipocytes also contribute in tumor development through different processes. The TAMs become proangiogenic through secretion of VEGF-A and building vessel network for nourishment and invasion of the tumor mass. The latest developments of ECM involvement in breast cancer progression has been discussed in this review and this study will help researchers in designing future work on breast cancer pathogenesis and developing therapy targeted to the ECM components.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 274 ◽  
Author(s):  
Manoj Kumar Jena ◽  
Jagadeesh Janjanam

Evidence is increasing on the crucial role of the extracellular matrix (ECM) in breast cancer progression, invasion and metastasis with almost all mortality cases owing to metastasis. The epithelial-mesenchymal transition is the first signal of metastasis involving different transcription factors such as Snail, TWIST, and ZEB1. ECM remodeling is a major event promoting cancer invasion and metastasis; where matrix metalloproteinases (MMPs) such as MMP-2, -9, -11, and -14 play vital roles degrading the matrix proteins for cancer spread. The β-D mannuronic acid (MMP inhibitor) has anti-metastatic properties through inhibition of MMP-2, and -9 and could be a potential therapeutic agent. Besides the MMPs, the enzymes such as LOXL2, LOXL4, procollagen lysyl hydroxylase-2, and heparanase also regulate breast cancer progression. The important ECM proteins like integrins (b1-, b5-, and b6- integrins), ECM1 protein, and Hic-5 protein are also actively involved in breast cancer development. The stromal cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and adipocytes also contribute in tumor development through different processes. The TAMs become proangiogenic through secretion of VEGF-A and building vessel network for nourishment and invasion of the tumor mass. The latest developments of ECM involvement in breast cancer progression has been discussed in this review and this study will help researchers in designing future work on breast cancer pathogenesis and developing therapy targeted to the ECM components.


2014 ◽  
Author(s):  
Mattia Capulli ◽  
Adriano Angelucci ◽  
Anna Teti ◽  
Patrizia Sanita ◽  
Luca Ventura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document