Arctic Ocean Model Intercomparison Project (AOMIP): Travel Support for Workshops

2010 ◽  
Author(s):  
Michael Steele
Oceanography ◽  
2011 ◽  
Vol 24 (3) ◽  
pp. 102-113 ◽  
Author(s):  
Andrey Proshutinsky ◽  
Yevgeny Aksenov ◽  
Jaclyn Clement Kinney ◽  
Rüdiger Gerdes ◽  
Elena Golubeva ◽  
...  

2012 ◽  
Vol 117 (C8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Mark Johnson ◽  
Andrey Proshutinsky ◽  
Yevgeny Aksenov ◽  
An T. Nguyen ◽  
Ron Lindsay ◽  
...  

2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2020 ◽  
Vol 37 (6) ◽  
pp. 662-662
Author(s):  
Pengfei Lin ◽  
Zipeng Yu ◽  
Hailong Liu ◽  
Yongqiang Yu ◽  
Yiwen Li ◽  
...  

Author(s):  
Xiao Dong ◽  
Jiangbo Jin ◽  
Hailong Liu ◽  
He Zhang ◽  
Minghua Zhang ◽  
...  

AbstractAs a member of the Chinese modeling groups, the coupled ocean-ice component of the Chinese Academy of Sciences’ Earth System Model, version 2.0 (CAS-ESM2.0), is taking part in the Ocean Model Intercomparison Project Phase 1 (OMIP1) experiment of phase 6 of the Coupled Model Intercomparison Project (CMIP6). The simulation was conducted, and monthly outputs have been published on the ESGF (Earth System Grid Federation) data server. In this paper, the experimental dataset is introduced, and the preliminary performances of the ocean model in simulating the global ocean temperature, salinity, sea surface temperature, sea surface salinity, sea surface height, sea ice, and Atlantic Meridional Overturning Circulation (AMOC) are evaluated. The results show that the model is at quasi-equilibrium during the integration of 372 years, and performances of the model are reasonable compared with observations. This dataset is ready to be downloaded and used by the community in related research, e.g., multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.


2020 ◽  
Author(s):  
Hakase Hayashida ◽  
Meibing Jin ◽  
Nadja S. Steiner ◽  
Neil C. Swart ◽  
Eiji Watanabe ◽  
...  

Abstract. Ice algae play a fundamental role in shaping polar marine ecosystems and biogeochemistry. This role can be investigated by field observations, however the influence of ice algae at the regional and global scales remains unclear due to limited spatial and temporal coverage of observations, and because ice algae are typically not included in current Earth System Models. To address this knowledge gap, we introduce a new model intercomparison project (MIP), referred to here as the Ice Algae Model Intercomparison Project phase 2 (IAMIP2). IAMIP2 is built upon the experience from its previous phase, and expands its scope to global coverage (both Arctic and Antarctic) and centennial timescales (spanning the mid-twentieth century to the end of the twenty-first century). Participating models are three-dimensional regional and global coupled sea ice–ocean models that incorporate sea-ice ecosystem components. These models are driven by the same initial conditions and atmospheric forcing datasets by incorporating and expanding the protocols of the Ocean Model Intercomparison Project, an endorsed MIP of the Coupled Model Intercomparison Project phase 6 (CMIP6). Doing so provides more robust estimates of model bias and uncertainty, and consequently advances the science of polar marine ecosystems and biogeochemistry. A diagnostic protocol is designed to enhance the reusability of the model data products of IAMIP2. Lastly, the limitations and strengths of IAMIP2 are discussed in the context of prospective research outcomes.


Sign in / Sign up

Export Citation Format

Share Document