Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils

2011 ◽  
Vol 75 (4) ◽  
pp. 1315-1329 ◽  
Author(s):  
T.K.K. Chamindu Deepagoda ◽  
Per Moldrup ◽  
Per Schjønning ◽  
Ken Kawamoto ◽  
Toshiko Komatsu ◽  
...  
1984 ◽  
Author(s):  
R. S. Sandhu ◽  
S. J. Hong ◽  
B. L. Aboustit

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 443
Author(s):  
Camille Rousset ◽  
Timothy J. Clough ◽  
Peter R. Grace ◽  
David W. Rowlings ◽  
Clemens Scheer

Pastures require year-round access to water and in some locations rely on irrigation during dry periods. Currently, there is a dearth of knowledge about the potential for using irrigation to mitigate N2O emissions. This study aimed to mitigate N2O losses from intensely managed pastures by adjusting irrigation frequency using soil gas diffusivity (Dp/Do) thresholds. Two irrigation regimes were compared; a standard irrigation treatment based on farmer practice (15 mm applied every 3 days) versus an optimised irrigation treatment where irrigation was applied when soil Dp/Do was ≈0.033 (equivalent to 50% of plant available water). Cow urine was applied at a rate of 700 kg N ha−1 to simulate a ruminant urine deposition event. In addition to N2O fluxes, soil moisture content was monitored hourly, Dp/Do was modelled, and pasture dry matter production was measured. Standard irrigation practices resulted in higher (p = 0.09) cumulative N2O emissions than the optimised irrigation treatment. Pasture growth rates under treatments did not differ. Denitrification during re-wetting events (irrigation and rain) contributed to soil N2O emissions. These results warrant further modelling of irrigation management as a mitigation option for N2O emissions from pasture soils, based on Dp/Do thresholds, rainfall, plant water demands and evapotranspiration.


Geoderma ◽  
2021 ◽  
Vol 398 ◽  
pp. 115094
Author(s):  
G.J. Smith ◽  
R.W. McDowell ◽  
K. Daly ◽  
D. Ó hUallacháin ◽  
L.M. Condron ◽  
...  

10.2118/98-63 ◽  
1998 ◽  
Author(s):  
Y. Zhang ◽  
C.L. Hyndman ◽  
B. Maini
Keyword(s):  

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1520
Author(s):  
Zheng Jiang ◽  
Quanzhong Huang ◽  
Gendong Li ◽  
Guangyong Li

The parameters of water movement and solute transport models are essential for the accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions. Parameter estimation can be achieved using the inverse modeling method. However, this type of method cannot fully consider the uncertainties of measurements, boundary conditions, and parameters, resulting in inaccurate estimations of parameters and predictions of state variables. The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF was used to estimate the parameters of water movement and solute transport in layered, variably saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software (University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters and predicts state variables for layered, variably saturated soils. The assimilation of factors such as the initial perturbation and ensemble size significantly affected in the simulated results. A proposed ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological models of the present study. Although the simulation results for moisture did not exhibit substantial improvement with the assimilation, the simulation of the salinity was significantly improved through the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse field condition observation data also benefited from the accurate measurement of state variables in the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably saturated soils with hydrological models requires further study, because it is a challenging and highly nonlinear problem.


2002 ◽  
Vol 260 (1-4) ◽  
pp. 75-87 ◽  
Author(s):  
Xiaoxian Zhang ◽  
A. Glyn Bengough ◽  
John W. Crawford ◽  
Iain M. Young
Keyword(s):  

Ground Water ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 857-870 ◽  
Author(s):  
Rhiannon M. Garrard ◽  
Yong Zhang ◽  
Song Wei ◽  
HongGuang Sun ◽  
Jiazhong Qian

2021 ◽  
Vol 137 ◽  
pp. 104300
Author(s):  
Yi Chong Cheng ◽  
Ri Hong Zhang ◽  
Kui Hua Wang ◽  
Zhi Yong Ai

Sign in / Sign up

Export Citation Format

Share Document