Extension of Black-Scholes Equation for Derivatives with Time Dependent Payoff Specifications

2001 ◽  
Author(s):  
Shahram Alavian
Keyword(s):  
2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
Gordana Dmitrasinovic-Vidovic ◽  
Ali Lari-Lavassani ◽  
Xun Li ◽  
Antony Ware

Portfolio optimization with respect to different risk measures is of interest to both practitioners and academics. For there to be a well-defined optimal portfolio, it is important that the risk measure be coherent and quasiconvex with respect to the proportion invested in risky assets. In this paper we investigate one such measure—conditional capital at risk—and find the optimal strategies under this measure, in the Black-Scholes continuous time setting, with time dependent coefficients.


2021 ◽  
Vol 63 (2) ◽  
pp. 178-202
Author(s):  
P. NONSOONG ◽  
K. MEKCHAY ◽  
S. RUJIVAN

AbstractWe present an analytical option pricing formula for the European options, in which the price dynamics of a risky asset follows a mean-reverting process with a time-dependent parameter. The process can be adapted to describe a seasonal variation in price such as in agricultural commodity markets. An analytical solution is derived based on the solution of a partial differential equation, which shows that a European option price can be decomposed into two terms: the payoff of the option at the initial time and the time-integral over the lifetime of the option driven by a time-dependent parameter. Finally, results obtained from the formula have been compared with Monte Carlo simulations and a Black–Scholes-type formula under various kinds of long-run mean functions, and some examples of option price behaviours have been provided.


2016 ◽  
Vol 19 (05) ◽  
pp. 1650031 ◽  
Author(s):  
NICOLAS LANGRENÉ ◽  
GEOFFREY LEE ◽  
ZILI ZHU

We examine the inverse gamma (IGa) stochastic volatility model with time-dependent parameters. This nonaffine model compares favorably in terms of volatility distribution and volatility paths to classical affine models such as the Heston model, while being as parsimonious (only four stochastic parameters). In practice, this means more robust calibration and better hedging, explaining its popularity among practitioners. Closed-form volatility-of-volatility expansions are obtained for the price of vanilla options, which allow for very fast pricing and calibration to market data. Specifically, the price of a European put option with IGa volatility is approximated by a Black–Scholes price plus a weighted combination of Black–Scholes Greeks, with weights depending only on the four time-dependent parameters of the model. The accuracy of the expansion is illustrated on several calibration tests on foreign exchange market data. This paper shows that the IGa model is as simple, more realistic, easier to implement and faster to calibrate than classical transform-based affine models. We therefore hope that the present work will foster further research on nonaffine models favored by practitioners such as the IGa model.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yuzi Jin ◽  
Jian Wang ◽  
Sangkwon Kim ◽  
Youngjin Heo ◽  
Changwoo Yoo ◽  
...  

We propose a simple and robust numerical algorithm to estimate a time-dependent volatility function from a set of market observations, using the Black–Scholes (BS) model. We employ a fully implicit finite difference method to solve the BS equation numerically. To define the time-dependent volatility function, we define a cost function that is the sum of the squared errors between the market values and the theoretical values obtained by the BS model using the time-dependent volatility function. To minimize the cost function, we employ the steepest descent method. However, in general, volatility functions for minimizing the cost function are nonunique. To resolve this problem, we propose a predictor-corrector technique. As the first step, we construct the volatility function as a constant. Then, in the next step, our algorithm follows the prediction step and correction step at half-backward time level. The constructed volatility function is continuous and piecewise linear with respect to the time variable. We demonstrate the ability of the proposed algorithm to reconstruct time-dependent volatility functions using manufactured volatility functions. We also present some numerical results for real market data using the proposed volatility function reconstruction algorithm.


2007 ◽  
Vol 05 (01) ◽  
pp. 51-66 ◽  
Author(s):  
MARIANITO R. RODRIGO ◽  
ROGEMAR S. MAMON

In this article, we use a Mellin transform approach to prove the existence and uniqueness of the price of a European option under the framework of a Black–Scholes model with time-dependent coefficients. The formal solution is rigorously shown to be a classical solution under quite general European contingent claims. Specifically, these include claims that are bounded and continuous, and claims whose difference with some given but arbitrary polynomial is bounded and continuous. We derive a maximum principle and use it to prove uniqueness of the option price. An extension of the put-call parity which relates the aforementioned two classes of claims is also given.


2008 ◽  
Vol 11 (04) ◽  
pp. 363-380 ◽  
Author(s):  
CHRISTIAN BENDER ◽  
MICHAEL KOHLMANN

We apply theoretical results by Peng on supersolutions for Backward SDEs (BSDEs) to the problem of finding optimal superhedging strategies in a generalized Black–Scholes market under constraints. Constraints may be imposed simultaneously on wealth process and portfolio. They may be non-convex, time-dependent, and random. The BSDE method turns out to be an extremely useful tool for modeling realistic markets: in this paper, it is shown how more realistic constraints on the portfolio may be formulated via BSDE theory in terms of the amount of money invested, the portfolio proportion, or the number of shares held. Based on recent advances on numerical methods for BSDEs (in particular, the forward scheme by Bender and Denk [1]), a Monte Carlo method for approximating the superhedging price is given, which demonstrates the practical applicability of the BSDE method. Some numerical examples concerning European and American options under non-convex borrowing constraints are presented.


Sign in / Sign up

Export Citation Format

Share Document