Testing J-Curve Phenomena for India

2013 ◽  
Author(s):  
Anshul Kumar Singh
Keyword(s):  
2017 ◽  
Author(s):  
Kris Ivanovski ◽  
Sefa Awaworyi Churchill ◽  
Nuhu Ahmed Salim
Keyword(s):  

1951 ◽  
Vol 46 (4) ◽  
pp. 534-538
Author(s):  
Pauline N. Pepinsky
Keyword(s):  

Author(s):  
Moses Mutharime Mwito ◽  
Beatrice K. Mkenda ◽  
Eliab Luvanda
Keyword(s):  
J Curve ◽  

2021 ◽  
Vol 11 (7) ◽  
pp. 592
Author(s):  
Sonja A. G. A. Grothues ◽  
Klaus Radermacher

The native femoral J-Curve is known to be a relevant determinant of knee biomechanics. Similarly, after total knee arthroplasty, the J-Curve of the femoral implant component is reported to have a high impact on knee kinematics. The shape of the native femoral J-Curve has previously been analyzed in 2D, however, the knee motion is not planar. In this study, we investigated the J-Curve in 3D by principal component analysis (PCA) and the resulting mean shapes and modes by geometric parameter analysis. Surface models of 90 cadaveric femora were available, 56 male, 32 female and two without respective information. After the translation to a bone-specific coordinate system, relevant contours of the femoral condyles were derived using virtual rotating cutting planes. For each derived contour, an extremum search was performed. The extremum points were used to define the 3D J-Curve of each condyle. Afterwards a PCA and a geometric parameter analysis were performed on the medial and lateral 3D J-Curves. The normalized measures of the mean shapes and the aspects of shape variation of the male and female 3D J-Curves were found to be similar. When considering both female and male J-Curves in a combined analysis, the first mode of the PCA primarily consisted of changes in size, highlighting size differences between female and male femora. Apart from changes in size, variation regarding aspect ratio, arc lengths, orientation, circularity, as well as regarding relative location of the 3D J-Curves was found. The results of this study are in agreement with those of previous 2D analyses on shape and shape variation of the femoral J-Curves. The presented 3D analysis highlights new aspects of shape variability, e.g., regarding curvature and relative location in the transversal plane. Finally, the analysis presented may support the design of (patient-specific) femoral implant components for TKA.


Sign in / Sign up

Export Citation Format

Share Document