Potential Implications of New Synthetic Biology and Genomic Research Trajectories on the International Treaty for Plant Genetic Resources for Food and Agriculture

Author(s):  
Eric Welch ◽  
Margo A. Bagley ◽  
Todd Kuiken ◽  
Selim Louafi
2016 ◽  
Vol 8 (6) ◽  
pp. 65-79
Author(s):  
Atieno Otieno Gloria ◽  
Wasswa Mulumba John ◽  
Seyoum Wedajoo Aseffa ◽  
Jae Lee Myung ◽  
Kiwuka Catherine ◽  
...  

2006 ◽  
Vol 4 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Niels P. Louwaars ◽  
Eva Thörn ◽  
José Esquinas-Alcázar ◽  
Shumin Wang ◽  
Abebe Demissie ◽  
...  

Applied genetics combined with practical plant breeding is a powerful tool in agricultural development and for food security. The Green Revolution spurred the world's potential to meet its food, feed and fibre needs at a time when vast regions were notoriously food-insecure. Subsequent adaptations of such strategies, from the late 1980s onwards, in order to develop new plant varieties in a more participatory way, have strengthened the focus on applying technology to farmers' diverse needs, feeding research results into a variety of seed systems. During these developments, there were no major legal impediments to the acquisition of either local or formal knowledge or of the building blocks of plant breeding: genetic resources. The emergence of molecular biology in plant science is creating a wealth of opportunities, both to understand better the limitations of crop production and to use a much wider array of genetic diversity in crop improvement. This ‘Gene Revolution’ needs to incorporate the lessons from the Green Revolution in order to reach its target groups. However, the policy environment has changed. Access to technologies is complicated by the spread of private rights (intellectual property rights), and access to genetic resources by new national access laws. Policies on access to genetic resources have changed from the concept of the ‘Heritage of Mankind’ for use for the benefit of all mankind to ‘National Sovereignty’, based on the Convention on Biological Diversity, for negotiated benefit-sharing between a provider and a user. The Generation Challenge Programme intends to use genomic techniques to identify and use characteristics that are of value to the resource-poor, and is looking for ways to promote freedom-to-operate for plant breeding technologies and materials. Biodiversity provides the basis for the effective use of these genomic techniques. National access regulations usually apply to all biodiversity indiscriminately and may cause obstacles or delays in the use of genetic resources in agriculture. Different policies are being developed in different regions. Some emphasize benefit-sharing, and limit access in order to implement this (the ‘African Model Law’), while others, in recognition of countries' interdependence, provide for facilitated access to all genetic resources under the jurisdiction of countries in the region (the Nordic Region). There are good reasons why the use of agricultural biodiversity needs to be regulated differently from industrial uses of biodiversity. The International Treaty on Plant Genetic Resources for Food and Agriculture, which entered into force in 2004, provides for facilitated access to agricultural genetic resources, at least for the crops that are included in the Treaty's ‘Multilateral System of Access and Benefit-sharing’. Ratification of the Treaty is proceeding apace, and negotiations have entered a critical stage in the development of practical instruments for its implementation. Although the scope of the Treaty is all plant genetic resources for food and agriculture, there are important crops that are not covered by its Multilateral System. Humanitarian licences are being used to provide access for the poor to protected technologies: countries may need to create such a general humanitarian access regime, to ensure the poor have the access they need to agricultural genetic resources.


2003 ◽  
Vol 1 (1) ◽  
pp. 11-18 ◽  
Author(s):  
M. O. Humphreys

AbstractUK agriculture is undergoing significant change with reduced subsidies for food production, increasing consumer demands for food safety and traceability, and environmental concerns including climate and demographic change. The International Treaty on Plant Genetic Resources for Food and Agriculture adopted by the United Nations Food and Agriculture Organisation supports the use of genetic resources for research and breeding. Mining genetic resources for useful genetic variation is perceived as a major benefit of genebanks. However, utilization by breeders may be constrained by poor characterization of genetic resources, a widening gap between improved and unimproved material, and the disruption of well- adapted genotypes during introgression. Breeders working with grasses and forage legumes for sustainable agriculture are fortunate in the wealth of genetic variation available both within the primary species of interest and among related species. New DNA technologies allow more targeted approaches to the use of these genetic resources. Possibilities for gene transfer between related species using conventional techniques expand the available gene pools while potential use of genetic transformation extend these even further.


Sign in / Sign up

Export Citation Format

Share Document