synthetic biology
Recently Published Documents





2022 ◽  
Hyuna Jo ◽  
Seunghyun Sim

With advances in the field of synthetic biology increasingly allowing us to engineer living cells to perform intricate tasks, incorporating these engineered cells into the design of synthetic polymeric materials will enable programming materials with a wide range of biological functionalities. However, employable strategies for the design of synthetic polymers that form a well-defined interface with living cells and seamlessly integrate their functionalities in materials are still largely limited. Herein, we report the first example of living materials constructed with a dynamic covalent interface between synthetic polymers and living B. subtilis cells. We showedthat 3-acetamidophenylboronic acid (APBA) and polymers of APBA (pAPBA) form dynamic covalent bonds with available diols on the B. subtilis cell surface. Importantly, pAPBA binding to B. subtilis shows a multivalent effect with complete reversibility upon addition of competitive diol species, such as fructose and sorbitol. On the basis of these findings, we constructed telechelic block copolymers with pAPBA chain ends that crosslink B. subtilis cells and produced self- standing living materials. We further demonstrated that the encapsulated cells could be retrieved upon immersing these materials in solutions containing competitive diols and further subjected to biological analyses. This work establishes the groundwork for building a myriad of synthetic polymeric materials integrating engineered living cells and provides a platform for understanding the biology of cells confined within materials.

Jiefei Wang ◽  
W. Seth Childers

The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome’s contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.

2022 ◽  
Vol 8 ◽  
Yangming Zhang ◽  
Linguang Zhou ◽  
Jialin Xia ◽  
Ce Dong ◽  
Xiaozhou Luo

The commensal microbiome is essential for human health and is involved in many processes in the human body, such as the metabolism process and immune system activation. Emerging evidence implies that specific changes in the microbiome participate in the development of various diseases, including diabetes, liver diseases, tumors, and pathogen infections. Thus, intervention on the microbiome is becoming a novel and effective method to treat such diseases. Synthetic biology empowers researchers to create strains with unique and complex functions, making the use of engineered microbes for clinical applications attainable. The aim of this review is to summarize recent advances about the roles of the microbiome in certain diseases and the underlying mechanisms, as well as the use of engineered microbes in the prevention, detection, and treatment of various diseases.

2022 ◽  
Vol 10 (1) ◽  
pp. 163
Laura Ellen Walls ◽  
José L. Martinez ◽  
Leonardo Rios-Solis

The recent technological advancements in synthetic biology have demonstrated the extensive potential socio-economic benefits at laboratory scale. However, translations of such technologies to industrial scale fermentations remains a major bottleneck. The existence and lack of understanding of the major discrepancies in cultivation conditions between scales often leads to the selection of suboptimal bioprocessing conditions, crippling industrial scale productivity. In this study, strategic design of experiments approaches were coupled with state-of-the-art bioreactor tools to characterize and overcome nutritional stress for the enhanced production of precursors to the blockbuster chemotherapy drug, Taxol, in S. cerevisiae cell factories. The batch-to-batch variation in yeast extract composition was found to trigger nutritional stress at a mini-bioreactor scale, resulting in profound changes in cellular morphology and the inhibition of taxane production. The cells shifted from the typical budding morphology into striking pseudohyphal cells. Doubling initial yeast extract and peptone concentrations (2×YP) delayed filamentous growth, and taxane accumulation improved to 108 mg/L. Through coupling a statistical definitive screening design approach with the state-of-the-art high-throughput micro-bioreactors, the total taxane titers were improved a further two-fold, compared to the 2×YP culture, to 229 mg/L. Filamentous growth was absent in nutrient-limited microscale cultures, underlining the complex and multifactorial nature of yeast stress responses. Validation of the optimal microscale conditions in 1L bioreactors successfully alleviated nutritional stress and improved the titers to 387 mg/L. Production of the key Taxol precursor, T5αAc, was improved two-fold to 22 mg/L compared to previous maxima. The present study highlights the importance of following an interdisciplinary approach combining synthetic biology and bioprocessing technologies for effective process optimization and scale-up.

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 124
Nabeel M. Althabhawi ◽  
Zinatul Ashiqin Zainol

A combination of 3D printing techniques and synthetic biology, 3D bioprinting is a promising field. It is expected that 3D bioprinting technologies will have applications across an array of fields, spanning biotechnology, medical surgery and the pharmaceutical industry. Nonetheless, the progress of these technologies could be hindered, unless there is adequate and effective protection for related applications. In this article, the authors examine the patent eligibility of 3D bioprinting technologies. This issue raises concern given that existing patent systems are generally averse to nature-derived inventions and many of them exclude products of nature or discoveries from patentability. This qualitative study analyses the current patent systems in key jurisdictions, particularly, the U.S. and the EU, and their applicability, as well as effectiveness, in the context of 3D bioprinting. The study argues that the main reason for the apathy of existing patent systems towards bio-inventions is that they were designed to deal with mechanical inventions. It suggests an innovation framework that encompasses both mechanical and biological inventions to cater adequately to emerging technologies.

2022 ◽  
Lauren Gambill ◽  
August Staubus ◽  
Andrea Ameruoso ◽  
James Chappell

Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we used laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivered a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We resolved a thermodynamic model to guide RENDR design, showed how input signals can be transduced into diverse visual, chemical, and regulatory outputs, and used RENDR to detect an antibiotic resistance phenotype in bacteria. This work shows how transcriptional signals can be monitored in situ using RNA synthetic biology and converted into different types of biochemical information.

2022 ◽  
Vol 5 (1) ◽  
Fengyu Zhang ◽  
Yanhong Sun ◽  
Yihao Zhang ◽  
Wenting Shen ◽  
Shujing Wang ◽  

AbstractSynthetic Biology aims to create predictable biological circuits and fully operational biological systems. Although there are methods to create more stable oscillators, such as repressilators, independently controlling the oscillation of reporter genes in terms of their amplitude and period is only on theoretical level. Here, we introduce a new oscillator circuit that can be independently controlled by two inducers in Escherichia coli. Some control components, including σECF11 and NahR, were added to the circuit. By systematically tuning the concentration of the inducers, salicylate and IPTG, the amplitude and period can be modulated independently. Furthermore, we constructed a quantitative model to forecast the regulation results. Under the guidance of the model, the expected oscillation can be regulated by choosing the proper concentration combinations of inducers. In summary, our work achieved independent control of the oscillator circuit, which allows the oscillator to be modularized and used in more complex circuit designs.

All Life ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 1-12
Reagan Mudziwapasi ◽  
Jonathan Mufandaedza ◽  
Fortune N. Jomane ◽  
Fanuel Songwe ◽  
Abigarl Ndudzo ◽  

Sign in / Sign up

Export Citation Format

Share Document