scholarly journals Generation Expansion Planning in the Presence of Wind Power Plants Using a Genetic Algorithm Model

2019 ◽  
Author(s):  
Ali Sahragard Sahragard ◽  
Mahdi Farhadi ◽  
Amir Mosavi ◽  
Abouzar Estebsari
Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1143 ◽  
Author(s):  
Ali Sahragard ◽  
Hamid Falaghi ◽  
Mahdi Farhadi ◽  
Amir Mosavi ◽  
Abouzar Estebsari

One of the essential aspects of power system planning is generation expansion planning (GEP). The purpose of GEP is to enhance construction planning and reduce the costs of installing different types of power plants. This paper proposes a method based on a genetic algorithm (GA) for GEP in the presence of wind power plants. Since it is desirable to integrate the maximum possible wind power production in GEP, the constraints for incorporating different levels of wind energy in power generation are investigated comprehensively. This will allow the maximum reasonable amount of wind penetration in the network to be obtained. Besides, due to the existence of different wind regimes, the penetration of strong and weak wind on GEP is assessed. The results show that the maximum utilization of wind power generation capacity could increase the exploitation of more robust wind regimes. Considering the growth of the wind farm industry and the cost reduction for building wind power plants, the sensitivity of GEP to the variations of this cost is investigated. The results further indicate that for a 10% reduction in the initial investment cost of wind power plants, the proposed model estimates that the overall cost will be minimized.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Yang ◽  
Rui Zhang ◽  
Qiuye Sun ◽  
Huaguang Zhang

With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.


2020 ◽  
Vol 12 (3) ◽  
pp. 1083 ◽  
Author(s):  
Qingtao Li ◽  
Jianxue Wang ◽  
Yao Zhang ◽  
Yue Fan ◽  
Guojun Bao ◽  
...  

The increasing penetration of renewable energy brings great challenges to the planning and operation of power systems. To deal with the fluctuation of renewable energy, the main focus of current research is on incorporating the detailed operation constraints into generation expansion planning (GEP) models. In most studies, the traditional objective function of GEP is to minimize the total cost (including the investment and operation cost). However, in power systems with high penetration of renewable energy, more attention has been paid to increasing the utilization of renewable energy and reducing the renewable energy curtailment. Different from the traditional objective function, this paper proposes a new objective function to maximize the accommodation of renewable energy during the planning horizon, taking into account short-term operation constraints and uncertainties from load and renewable energy sources. A power grid of one province in China is modified as a case study to verify the rationality and effectiveness of the proposed model. Numerical results show that the proposed GEP model could install more renewable power plants and improve the accommodation of renewable energy compared to the traditional GEP model.


2016 ◽  
Vol 17 (4) ◽  
pp. 401-423 ◽  
Author(s):  
Ishan Sharan ◽  
R. Balasubramanian

Abstract Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document