A Deep Learning System Outperforms Clinicians in Identifying Optic Nerve Head Abnormalities Heralding Vision- and Life-Threatening Conditions

2021 ◽  
Author(s):  
Caroline Vasseneix ◽  
Simon Nusinovici ◽  
Xinxing Xu ◽  
Jeong Min Hwang ◽  
Steffen Hamann ◽  
...  
2018 ◽  
Vol 9 (7) ◽  
pp. 3244 ◽  
Author(s):  
Sripad Krishna Devalla ◽  
Prajwal K. Renukanand ◽  
Bharathwaj K. Sreedhar ◽  
Giridhar Subramanian ◽  
Liang Zhang ◽  
...  

2021 ◽  
Author(s):  
Ali Salehi ◽  
Madhusudhanan Balasubramanian

Purpose: To present a new structural biomarker for detecting glaucoma progression based on structural transformation of the optic nerve head (ONH) region. Methods: A dense ONH deformation was estimated using deep learning methods namely DDCNet-Multires, FlowNet2, and FlowNet-Correlation, and legacy computational methods namely the topographic change analysis (TCA) and proper orthogonal decomposition (POD) methods using longitudinal confocal scans of the ONH for each study eye. A candidate structural biomarker of glaucoma progression in a study eye was estimated as average magnitude of flow velocities within the ONH region. The biomarker was evaluated using longitudinal confocal scans of 12 laser-treated and 12 contralateral normal eyes of 12 primates from the LSU Experimental Glaucoma Study (LEGS); and 36 progressing eyes and 21 longitudinal normal eyes from the UCSD Diagnostic Innovations in Glaucoma Study (DIGS). Area under the ROC curves (AUC) was used to assess the diagnostic accuracy of the candidate biomarker. Results: AUROC (95\% CI) for LEGS were: 0.83 (0.79, 0.88) for DDCNet-Multires; 0.83 (0.78, 0.88) for FlowNet2; 0.83 (0.78, 0.88) for FlowNet-Correlation; 0.94 (0.91, 0.97) for POD; and 0.86 (0.82, 0.91) for TCA methods. For DIGS: 0.89 (0.80, 0.97) for DDCNet-Multires; 0.82 (0.71, 0.93) for FlowNet2; 0.93 (0.86, 0.99) for FlowNet-Correlation; 0.86 (0.76, 0.96) for POD; and 0.86 (0.77, 0.95) for TCA methods. Lower diagnostic accuracy of the learning-based methods for LEG study eyes were due to image alignment errors in confocal sequences. Conclusion: Deep learning methods trained to estimate generic deformation were able to detect ONH deformation from confocal images and provided a higher diagnostic accuracy when compared to the classical optical flow and legacy biomarkers of glaucoma progression. Because it is difficult to validate the estimates of dense ONH deformation in clinical population, our validation using ONH sequences under controlled experimental conditions confirms the diagnostic accuracy of the biomarkers observed in the clinical population. Performance of these deep learning methods can be further improved by fine-tuning these networks using longitudinal ONH sequences instead of training the network to be a general-purpose deformation estimator.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sripad Krishna Devalla ◽  
Giridhar Subramanian ◽  
Tan Hung Pham ◽  
Xiaofei Wang ◽  
Shamira Perera ◽  
...  

Abstract Optical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the presence of speckle noise affects the quality of OCT images and its interpretation. Although recent frame-averaging techniques have shown to enhance OCT image quality, they require longer scanning durations, resulting in patient discomfort. Using a custom deep learning network trained with 2,328 ‘clean B-scans’ (multi-frame B-scans; signal averaged), and their corresponding ‘noisy B-scans’ (clean B-scans + Gaussian noise), we were able to successfully denoise 1,552 unseen single-frame (without signal averaging) B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean signal to noise ratio (SNR) increased from 4.02 ± 0.68 dB (single-frame) to 8.14 ± 1.03 dB (denoised). For all the ONH tissues, the mean contrast to noise ratio (CNR) increased from 3.50 ± 0.56 (single-frame) to 7.63 ± 1.81 (denoised). The mean structural similarity index (MSSIM) increased from 0.13 ± 0.02 (single frame) to 0.65 ± 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort.


Ophthalmology ◽  
2020 ◽  
Vol 127 (3) ◽  
pp. 346-356 ◽  
Author(s):  
Mark Christopher ◽  
Christopher Bowd ◽  
Akram Belghith ◽  
Michael H. Goldbaum ◽  
Robert N. Weinreb ◽  
...  

Author(s):  
Daniel Gonzalez-Hernandez ◽  
Tinguaro Diaz-Aleman ◽  
Daniel Perez-Barbudo ◽  
Carmen Mendez-Hernandez ◽  
Manuel Gonzalez de la Rosa ◽  
...  

2020 ◽  
Vol 11 (11) ◽  
pp. 6356
Author(s):  
Sripad Krishna Devalla ◽  
Tan Hung Pham ◽  
Satish Kumar Panda ◽  
Liang Zhang ◽  
Giridhar Subramanian ◽  
...  

2018 ◽  
Vol 59 (1) ◽  
pp. 63 ◽  
Author(s):  
Sripad Krishna Devalla ◽  
Khai Sing Chin ◽  
Jean-Martial Mari ◽  
Tin A. Tun ◽  
Nicholas G. Strouthidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document