Reversible Data Hiding in Encrypted Images Using Histogram Modification and Msbs Integration

2022 ◽  
Author(s):  
Ammar Mohammadi ◽  
Mohammad Ali Akhaee
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dawen Xu ◽  
Kai Chen ◽  
Rangding Wang ◽  
Shubing Su

An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Dawen Xu ◽  
Shubing Su

In this paper, an efficient reversible data hiding method for encrypted image based on neighborhood prediction is proposed, which includes image encryption, reversible data hiding in encrypted domain, and hidden data extraction. The cover image is first partitioned into non-overlapping blocks, and then the pixel value in each block is encrypted by modulo operation. Therefore, the linear prediction difference in the block that satisfies the specific condition is consistent before and after encryption, ensuring that data extraction is completely separable from image decryption. In addition, by using the linear weighting of three adjacent pixels in the block to predict the current pixel, the prediction accuracy can be improved. The data-hider, who does not know the original image content, may embed additional data based on prediction difference histogram modification. Data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.


2016 ◽  
Vol 76 (3) ◽  
pp. 3899-3920 ◽  
Author(s):  
Zhaoxia Yin ◽  
Andrew Abel ◽  
Jin Tang ◽  
Xinpeng Zhang ◽  
Bin Luo

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xi-Yan Li ◽  
Xia-Bing Zhou ◽  
Qing-Lei Zhou ◽  
Shi-Jing Han ◽  
Zheng Liu

With the development of cloud computing, high-capacity reversible data hiding in an encrypted image (RDHEI) has attracted increasing attention. The main idea of RDHEI is that an image owner encrypts a cover image, and then a data hider embeds secret information in the encrypted image. With the information hiding key, a receiver can extract the embedded data from the hidden image; with the encryption key, the receiver reconstructs the original image. In this paper, we can embed data in the form of random bits or scanned documents. The proposed method takes full advantage of the spatial correlation in the original images to vacate the room for embedding information before image encryption. By jointly using Sudoku and Arnold chaos encryption, the encrypted images retain the vacated room. Before the data hiding phase, the secret information is preprocessed by a halftone, quadtree, and S-BOX transformation. The experimental results prove that the proposed method not only realizes high-capacity reversible data hiding in encrypted images but also reconstructs the original image completely.


2012 ◽  
Vol 19 (4) ◽  
pp. 199-202 ◽  
Author(s):  
Wien Hong ◽  
Tung-Shou Chen ◽  
Han-Yan Wu

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 921
Author(s):  
Rui Wang ◽  
Guohua Wu ◽  
Qiuhua Wang ◽  
Lifeng Yuan ◽  
Zhen Zhang ◽  
...  

With the rapid development of cloud storage, an increasing number of users store their images in the cloud. These images contain many business secrets or personal information, such as engineering design drawings and commercial contracts. Thus, users encrypt images before they are uploaded. However, cloud servers have to hide secret data in encrypted images to enable the retrieval and verification of massive encrypted images. To ensure that both the secret data and the original images can be extracted and recovered losslessly, researchers have proposed a method that is known as reversible data hiding in encrypted images (RDHEI). In this paper, a new RDHEI method using median edge detector (MED) and two’s complement is proposed. The MED prediction method is used to generate the predicted values of the original pixels and calculate the prediction errors. The adaptive-length two’s complement is used to encode the most prediction errors. To reserve room, the two’s complement is labeled in the pixels. To record the unlabeled pixels, a label map is generated and embedded into the image. After the image has been encrypted, it can be embedded with the data. The experimental results indicate that the proposed method can reach an average embedding rate of 2.58 bpp, 3.04 bpp, and 2.94 bpp on the three datasets, i.e., UCID, BOSSbase, BOWS-2, which outperforms the previous work.


Sign in / Sign up

Export Citation Format

Share Document