scholarly journals Symmetries of the transfer operator for Γ0(N) and a character deformation of the Selberg zeta function for Γ0(4)

2012 ◽  
Vol 6 (3) ◽  
pp. 587-610 ◽  
Author(s):  
Markus Fraczek ◽  
Dieter Mayer
2011 ◽  
Vol 33 (1) ◽  
pp. 247-283 ◽  
Author(s):  
M. MÖLLER ◽  
A. D. POHL

AbstractWe characterize Maass cusp forms for any cofinite Hecke triangle group as 1-eigenfunctions of appropriate regularity of a transfer operator family. This transfer operator family is associated to a certain symbolic dynamics for the geodesic flow on the orbifold arising as the orbit space of the action of the Hecke triangle group on the hyperbolic plane. Moreover, we show that the Selberg zeta function is the Fredholm determinant of the transfer operator family associated to an acceleration of this symbolic dynamics.


Author(s):  
Louis Soares

AbstractWe consider the family of Hecke triangle groups $$ \Gamma _{w} = \langle S, T_w\rangle $$ Γ w = ⟨ S , T w ⟩ generated by the Möbius transformations $$ S : z\mapsto -1/z $$ S : z ↦ - 1 / z and $$ T_{w} : z \mapsto z+w $$ T w : z ↦ z + w with $$ w > 2.$$ w > 2 . In this case, the corresponding hyperbolic quotient $$ \Gamma _{w}\backslash {\mathbb {H}}^2 $$ Γ w \ H 2 is an infinite-area orbifold. Moreover, the limit set of $$ \Gamma _w $$ Γ w is a Cantor-like fractal whose Hausdorff dimension we denote by $$ \delta (w). $$ δ ( w ) . The first result of this paper asserts that the twisted Selberg zeta function $$ Z_{\Gamma _{ w}}(s, \rho ) $$ Z Γ w ( s , ρ ) , where $$ \rho : \Gamma _{w} \rightarrow \mathrm {U}(V) $$ ρ : Γ w → U ( V ) is an arbitrary finite-dimensional unitary representation, can be realized as the Fredholm determinant of a Mayer-type transfer operator. This result has a number of applications. We study the distribution of the zeros in the half-plane $$\mathrm {Re}(s) > \frac{1}{2}$$ Re ( s ) > 1 2 of the Selberg zeta function of a special family of subgroups $$( \Gamma _w^N )_{N\in {\mathbb {N}}} $$ ( Γ w N ) N ∈ N of $$\Gamma _w$$ Γ w . These zeros correspond to the eigenvalues of the Laplacian on the associated hyperbolic surfaces $$X_w^N = \Gamma _w^N \backslash {\mathbb {H}}^2$$ X w N = Γ w N \ H 2 . We show that the classical Selberg zeta function $$Z_{\Gamma _w}(s)$$ Z Γ w ( s ) can be approximated by determinants of finite matrices whose entries are explicitly given in terms of the Riemann zeta function. Moreover, we prove an asymptotic expansion for the Hausdorff dimension $$\delta (w)$$ δ ( w ) as $$w\rightarrow \infty $$ w → ∞ .


2014 ◽  
Vol 36 (1) ◽  
pp. 142-172 ◽  
Author(s):  
ANKE D. POHL

By a transfer operator approach to Maass cusp forms and the Selberg zeta function for cofinite Hecke triangle groups, Möller and the present author found a factorization of the Selberg zeta function into a product of Fredholm determinants of transfer-operator-like families:$$\begin{eqnarray}Z(s)=\det (1-{\mathcal{L}}_{s}^{+})\det (1-{\mathcal{L}}_{s}^{-}).\end{eqnarray}$$In this article we show that the operator families${\mathcal{L}}_{s}^{\pm }$arise as families of transfer operators for the triangle groups underlying the Hecke triangle groups, and that for$s\in \mathbb{C}$,$\text{Re}s={\textstyle \frac{1}{2}}$, the operator${\mathcal{L}}_{s}^{+}$(respectively${\mathcal{L}}_{s}^{-}$) has a 1-eigenfunction if and only if there exists an even (respectively odd) Maass cusp form with eigenvalue$s(1-s)$. For non-arithmetic Hecke triangle groups, this result provides a new formulation of the Phillips–Sarnak conjecture on non-existence of even Maass cusp forms.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Victoria Martin ◽  
Andrew Svesko

The heat kernel and quasinormal mode methods of computing 1-loop partition functions of spin ss fields on hyperbolic quotient spacetimes \mathbb{H}^{3}/\mathbb{Z}ℍ3/ℤ are related via the Selberg zeta function. We extend that analysis to thermal \text{AdS}_{2n+1}AdS2n+1 backgrounds, with quotient structure \mathbb{H}^{2n+1}/\mathbb{Z}ℍ2n+1/ℤ. Specifically, we demonstrate the zeros of the Selberg function encode the normal mode frequencies of spin fields upon removal of non-square-integrable modes. With this information we construct the 1-loop partition functions for symmetric transverse traceless tensors in terms of the Selberg zeta function and find exact agreement with the heat kernel method.


Sign in / Sign up

Export Citation Format

Share Document