scholarly journals Surjectivity of Galois representations in rational families of abelian varieties

2019 ◽  
Vol 13 (5) ◽  
pp. 995-1038
Author(s):  
Aaron Landesman ◽  
Ashvin Swaminathan ◽  
James Tao ◽  
Yujie Xu
Author(s):  
David Masser

AbstractThe theory of isogeny estimates for Abelian varieties provides ‘additive bounds’ of the form ‘d is at most B’ for the degrees d of certain isogenies. We investigate whether these can be improved to ‘multiplicative bounds’ of the form ‘d divides B’. We find that in general the answer is no (Theorem 1), but that sometimes the answer is yes (Theorem 2). Further we apply the affirmative result to the study of exceptional primes ℒ in connexion with modular Galois representations coming from elliptic curves: we prove that the additive bounds for ℒ of Masser and Wüstholz (1993) can be improved to multiplicative bounds (Theorem 3).


2003 ◽  
Vol 100 (1) ◽  
pp. 117-132 ◽  
Author(s):  
G. Banaszak ◽  
W. Gajda ◽  
P. Krasoń

Author(s):  
Lior Bary-Soroker ◽  
Arno Fehm ◽  
Gabor Wiese

AbstractWe prove a new Hilbertianity criterion for fields in towers whose steps are Galois with Galois group either abelian or a product of finite simple groups. We then apply this criterion to fields arising from Galois representations. In particular we settle a conjecture of Jarden on abelian varieties.


2013 ◽  
Vol 13 (3) ◽  
pp. 517-559 ◽  
Author(s):  
Eric Larson ◽  
Dmitry Vaintrob

AbstractGiven an abelian variety $A$ of dimension $g$ over a number field $K$, and a prime $\ell $, the ${\ell }^{n} $-torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$. In particular, we get a mod-$\ell $representation ${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $-adic representation ${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$. In this paper, we describe the possible determinants of subquotients of these two representations. These two lists turn out to be remarkably similar.Applying our results in dimension $g= 1$, we recover a generalized version of a theorem of Momose on isogeny characters of elliptic curves over number fields, and obtain, conditionally on the Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational isogenies of prime degree to number fields.


2014 ◽  
Vol 66 (5) ◽  
pp. 1167-1200 ◽  
Author(s):  
Victor Rotger ◽  
Carlos de Vera-Piquero

AbstractThe purpose of this note is to introduce a method for proving the non-existence of rational points on a coarse moduli space X of abelian varieties over a given number field K in cases where the moduli problem is not fine and points in X(K) may not be represented by an abelian variety (with additional structure) admitting a model over the field K. This is typically the case when the abelian varieties that are being classified have even dimension. The main idea, inspired by the work of Ellenberg and Skinner on the modularity of ℚ-curves, is that one may still attach a Galois representation of Gal(/K) with values in the quotient group GL(Tℓ(A))/ Aut(A) to a point P = [A] ∈ X(K) represented by an abelian variety A/, provided Aut(A) lies in the centre of GL(Tℓ(A)). We exemplify our method in the cases where X is a Shimura curve over an imaginary quadratic field or an Atkin–Lehner quotient over ℚ.


2015 ◽  
Vol 151 (9) ◽  
pp. 1626-1646 ◽  
Author(s):  
Jan Nekovář

We show that arithmetic local constants attached by Mazur and Rubin to pairs of self-dual Galois representations which are congruent modulo a prime number $p>2$ are compatible with the usual local constants at all primes not dividing $p$ and in two special cases also at primes dividing $p$. We deduce new cases of the $p$-parity conjecture for Selmer groups of abelian varieties with real multiplication (Theorem 4.14) and elliptic curves (Theorem 5.10).


Sign in / Sign up

Export Citation Format

Share Document