scholarly journals Fourier coefficients of nonholomorphic modular forms and sums of Kloosterman sums

1991 ◽  
Vol 148 (2) ◽  
pp. 303-317
Author(s):  
Ka-Lam Kueh
2013 ◽  
Vol 50 (2) ◽  
pp. 143-158
Author(s):  
Árpád Tóth

We give optimal bounds for Kloosterman sums that arise in the estimation of Fourier coefficients of Siegel modular forms of genus 2.


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


2019 ◽  
Vol 17 (1) ◽  
pp. 1631-1651
Author(s):  
Ick Sun Eum ◽  
Ho Yun Jung

Abstract After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight 3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending their work, we construct real-valued class invariants by using the singular values of the generalized Weber functions of level 5 and prove that their Galois traces are Fourier coefficients of a harmonic weak Maass form of weight 3/2 by using Shimura’s reciprocity law.


2016 ◽  
Vol 28 (6) ◽  
Author(s):  
Siegfried Böcherer ◽  
Toshiyuki Kikuta

AbstractWe show that a Siegel modular form with integral Fourier coefficients in a number field


2013 ◽  
Vol 09 (07) ◽  
pp. 1841-1853 ◽  
Author(s):  
B. K. MORIYA ◽  
C. J. SMYTH

We evaluate [Formula: see text] for a certain family of integer sequences, which include the Fourier coefficients of some modular forms. In particular, we compute [Formula: see text] for all positive integers n for Ramanujan's τ-function. As a consequence, we obtain many congruences — for instance that τ(1000m) is always divisible by 64000. We also determine, for a given prime number p, the set of n for which τ(pn-1) is divisible by n. Further, we give a description of the set {n ∈ ℕ : n divides τ(n)}. We also survey methods for computing τ(n). Finally, we find the least n for which τ(n) is prime, complementing a result of D. H. Lehmer, who found the least n for which |τ(n)| is prime.


2016 ◽  
Vol 234 ◽  
pp. 1-16
Author(s):  
SIEGFRIED BÖCHERER ◽  
WINFRIED KOHNEN

One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for $Z=X+iY$ when $Y\longrightarrow 0$.


Sign in / Sign up

Export Citation Format

Share Document