An application of Einstein Kahler metrics to proper holomorphic mappings between pseudoconvex domains

1998 ◽  
Vol 184 (1) ◽  
pp. 195-199
Author(s):  
Bun Wong
1999 ◽  
Vol 154 ◽  
pp. 57-72 ◽  
Author(s):  
Bernard Coupet ◽  
Yifei Pan ◽  
Alexandre Sukhov

AbstractWe describe the branch locus of a proper holomorphic mapping between two smoothly bounded pseudoconvex domains of finite type in under the assumption that the first domain admits a transversal holomorphic action of the unit circle. As an application we show that any proper holomorphic self-mapping of a smoothly bounded pseudoconvex complete circular domain of finite type in is biholomorphic.


2018 ◽  
Vol 154 (8) ◽  
pp. 1593-1632 ◽  
Author(s):  
Eleonora Di Nezza ◽  
Vincent Guedj

Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.


Sign in / Sign up

Export Citation Format

Share Document