scholarly journals HIGHER ORDER ASYMPTOTIC BEHAVIOR OF CERTAIN KÄHLER METRICS AND UNIFORMIZATION FOR STRONGLY PSEUDOCONVEX DOMAINS

2015 ◽  
Vol 52 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Jae-Cheon Joo ◽  
Aeryeong Seo
2014 ◽  
Vol 16 (03) ◽  
pp. 1450003 ◽  
Author(s):  
Bianca Santoro

In this note, we obtain existence results for complete Ricci-flat Kähler metrics on crepant resolutions of singularities of Calabi–Yau varieties. Furthermore, for certain asymptotically flat Calabi–Yau varieties, we show that the Ricci-flat metric on the resolved manifold has the same asymptotic behavior as the initial variety.


2018 ◽  
Vol 154 (8) ◽  
pp. 1593-1632 ◽  
Author(s):  
Eleonora Di Nezza ◽  
Vincent Guedj

Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.


2010 ◽  
Vol 84 (2) ◽  
pp. 427-453 ◽  
Author(s):  
Valentino Tosatti

2011 ◽  
Vol 29 (2) ◽  
pp. 025003 ◽  
Author(s):  
L C de Andrés ◽  
M Fernández ◽  
S Ivanov ◽  
J A Santisteban ◽  
L Ugarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document