scholarly journals Drinfeld doubles of the n-rank Taft algebras and a generalization of the Jones polynomial

2021 ◽  
Vol 312 (2) ◽  
pp. 421-456
Author(s):  
Ge Feng ◽  
Naihong Hu ◽  
Yunnan Li
Keyword(s):  
Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


1988 ◽  
Vol 104 (1) ◽  
pp. 105-113
Author(s):  
Makoto Sakuma

The Jones polynomial VL(t) of a link L in S3 contains certain information on the homology of the 2-fold branched covering D(L) of S3 branched along L. The following formulae are proved by Jones[3] and Lickorish and Millett[6] respectively:


1991 ◽  
Vol 109 (1) ◽  
pp. 83-103 ◽  
Author(s):  
H. R. Morton ◽  
P. Strickland

AbstractResults of Kirillov and Reshetikhin on constructing invariants of framed links from the quantum group SU(2)q are adapted to give a simple formula relating the invariants for a satellite link to those of the companion and pattern links used in its construction. The special case of parallel links is treated first. It is shown as a consequence that any SU(2)q-invariant of a link L is a linear combination of Jones polynomials of parallels of L, where the combination is determined explicitly from the representation ring of SU(2). As a simple illustration Yamada's relation between the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's polynomial for sublinks of L is deduced.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2008 ◽  
Vol 98 (2) ◽  
pp. 384-399 ◽  
Author(s):  
Oliver T. Dasbach ◽  
David Futer ◽  
Efstratia Kalfagianni ◽  
Xiao-Song Lin ◽  
Neal W. Stoltzfus

2000 ◽  
Vol 101 (3) ◽  
pp. 359-426 ◽  
Author(s):  
Mikhail Khovanov
Keyword(s):  

2019 ◽  
Vol 28 (08) ◽  
pp. 1950050
Author(s):  
Christine Ruey Shan Lee

It is known that the colored Jones polynomial of a [Formula: see text]-adequate link has a well-defined tail consisting of stable coefficients, and that the coefficients of the tail carry geometric and topological information on the [Formula: see text]-adequate link complement. We show that a power series similar to the tail of the colored Jones polynomial for [Formula: see text]-adequate links can be defined for all links, and that it is trivial if and only if the link is non [Formula: see text]-adequate.


Sign in / Sign up

Export Citation Format

Share Document