scholarly journals On a property of Bergman kernels when the Kähler potential is analytic

2021 ◽  
Vol 313 (2) ◽  
pp. 413-432
Author(s):  
Hamid Hezari ◽  
Hang Xu
2010 ◽  
Vol 21 (01) ◽  
pp. 77-115 ◽  
Author(s):  
ROBERT J. BERMAN

Let X be a domain in a closed polarized complex manifold (Y,L), where L is a (semi-) positive line bundle over Y. Any given Hermitian metric on L induces by restriction to X a Hilbert space structure on the space of global holomorphic sections on Y with values in the k-th tensor power of L (also using a volume form ωn on X. In this paper the leading large k asymptotics for the corresponding Bergman kernels and metrics are obtained in the case when X is a pseudo-concave domain with smooth boundary (under a certain compatibility assumption). The asymptotics are expressed in terms of the curvature of L and the boundary of X. The convergence of the Bergman metrics is obtained in a more general setting where (X,ωn) is replaced by any measure satisfying a Bernstein–Markov property. As an application the (generalized) equilibrium measure of the polarized pseudo-concave domain X is computed explicitly. Applications to the zero and mass distribution of random holomorphic sections and the eigenvalue distribution of Toeplitz operators will be described elsewhere.


2005 ◽  
Vol 02 (04) ◽  
pp. 633-655
Author(s):  
JOSÉ M. ISIDRO

Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kähler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kähler potential.


2018 ◽  
Vol 182 ◽  
pp. 02005
Author(s):  
I. Antoniadis

I describe the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tuneable) positive cosmological constant. It utilises a single chiral multiplet with a gauged shift symmetry, that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms. We also study the question if this model can lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kähler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters.


Sign in / Sign up

Export Citation Format

Share Document