flux compactifications
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 15)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Osmin Lacombe ◽  
George K. Leontaris

Abstract We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metastable de Sitter vacuum. The inflaton is identified with the volume modulus and has a potential with a very shallow minimum near the maximum. Inflation ends due to the presence of “waterfall” fields that drive the evolution of the Universe from a nearby saddle point towards a global minimum with tuneable vacuum energy describing the present state of our Universe.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Keiya Ishiguro ◽  
Hajime Otsuka

Abstract We investigate the vacuum structure of four-dimensional effective theory arising from Type IIB flux compactifications on a mirror of the rigid Calabi-Yau threefold, corresponding to a T-dual of the DeWolfe-Giryavets-Kachru-Taylor model in Type IIA flux compactifications. By analyzing the vacuum structure of this interesting corner of string landscape, it turns out that there exist perturbatively unstable de Sitter (dS) vacua in addition to supersymmetric and non-supersymmetric anti-de Sitter vacua. On the other hand, the stable dS vacua appearing in the low-energy effective action violate the tadpole cancellation condition, indicating a strong correlation between the existence of dS vacua and the flux-induced D3-brane charge (tadpole charge). We also find analytically that the tadpole charge constrained by the tadpole cancellation condition emerges in the scalar potential in a nontrivial way. Thus, the tadpole charge would restrict the existence of stable dS vacua, and this fact underlies the statement of the dS conjecture. Furthermore, our analytical and numerical results exhibit that distributions of $$ \mathcal{O}(1) $$ O 1 parameters in expressions of several swampland conjectures peak at specific values.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Maxence Corman ◽  
William E. East ◽  
Matthew C. Johnson

Abstract We study the nonlinear evolution of unstable flux compactifications, applying numerical relativity techniques to solve the Einstein equations in D dimensions coupled to a q-form field and positive cosmological constant. We show that initially homogeneous flux compactifications are unstable to dynamically forming warped compactifications. In some cases, we find that the warping process can serve as a toy-model of slow-roll inflation, while in other instances, we find solutions that eventually evolve to a singular state. Analogous to dynamical black hole horizons, we use the geometric properties of marginally trapped surfaces to characterize the lower dimensional vacua in the inhomogeneous and dynamical settings we consider. We find that lower-dimensional vacua with a lower expansion rate are dynamically favoured, and in some cases find spacetimes that undergo a period of accelerated expansion followed by contraction.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Federico Carta ◽  
Jakob Moritz

Abstract In flux compactifications of type IIB string theory with D3 and seven-branes, the negative induced D3 charge localized on seven-branes leads to an apparently pathological profile of the metric sufficiently close to the source. With the volume modulus stabilized in a KKLT de Sitter vacuum this pathological region takes over a significant part of the entire compactification, threatening to spoil the KKLT effective field theory. In this paper we employ the Seiberg-Witten solution of pure SU(N) super Yang-Mills theory to argue that wrapped seven-branes can be thought of as bound states of more microscopic exotic branes. We argue that the low-energy worldvolume dynamics of a stack of n such exotic branes is given by the (A1, An−1) Argyres-Douglas theory. Moreover, the splitting of the perturbative (in α′) seven-brane into its constituent branes at the non-perturbative level resolves the apparently pathological region close to the seven-brane and replaces it with a region of $$ \mathcal{O} $$ O (1) Einstein frame volume. While this region generically takes up an $$ \mathcal{O} $$ O (1) fraction of the compactification in a KKLT de Sitter vacuum we argue that a small flux superpotential dynamically ensures that the 4d effective field theory of KKLT remains valid nevertheless.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Thomas W. Grimm ◽  
Chongchuo Li

Abstract We study the backreaction effect of a large axion field excursion on the saxion partner residing in the same $$ \mathcal{N} $$ N = 1 multiplet. Such configurations are relevant in attempts to realize axion monodromy inflation in string compactifications. We work in the complex structure moduli sector of Calabi-Yau fourfold compactifications of F-theory with four-form fluxes, which covers many of the known Type II orientifold flux compactifications. Noting that axions can only arise near the boundary of the moduli space, the powerful results of asymptotic Hodge theory provide an ideal set of tools to draw general conclusions without the need to focus on specific geometric examples. We find that the boundary structure engraves a remarkable pattern in all possible scalar potentials generated by background fluxes. By studying the Newton polygons of the extremization conditions of all allowed scalar potentials and realizing the backreaction effects as Puiseux expansions, we find that this pattern forces a universal backreaction behavior of the large axion field on its saxion partner.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the moduli stabilization from the viewpoint of modular flavor symmetries. We systematically analyze stabilized moduli values in possible configurations of flux compactifications, investigating probabilities of moduli values and showing which moduli values are favorable from our moduli stabilization. Then, we examine their implications on modular symmetric flavor models. It is found that distributions of complex structure modulus τ determining the flavor structure are clustered at a fixed point with the residual ℤ3 symmetry in the SL(2, ℤ) fundamental region. Also, they are clustered at other specific points such as intersecting points between |τ|2 = k/2 and Re τ = 0,±1/4,±1/2, although their probabilities are less than the ℤ3 fixed point. In general, CP-breaking vacua in the complex structure modulus are statistically disfavored in the string landscape. Among CP-breaking vacua, the values Re τ = ±1/4 are most favorable in particular when the axio-dilaton S is stabilized at Re S = ±1/4. That shows a strong correlation between CP phases originated from string moduli.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas W. Grimm ◽  
Chongchuo Li ◽  
Irene Valenzuela

In the original paper a wrong affiliation has been assigned to author Chongchuo Li during the typesetting.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Iñaki García Etxebarria ◽  
Miguel Montero ◽  
Kepa Sousa ◽  
Irene Valenzuela

Abstract A bubble of nothing is a spacetime instability where a compact dimension collapses. After nucleation, it expands at the speed of light, leaving “nothing” behind. We argue that the topological and dynamical mechanisms which could protect a compactification against decay to nothing seem to be absent in string compactifications once supersymmetry is broken. The topological obstruction lies in a bordism group and, surprisingly, it can disappear even for a SUSY-compatible spin structure. As a proof of principle, we construct an explicit bubble of nothing for a T3 with completely periodic (SUSY-compatible) spin structure in an Einstein dilaton Gauss-Bonnet theory, which arises in the low-energy limit of certain heterotic and type II flux compactifications. Without the topological protection, supersymmetric compactifications are purely stabilized by a Coleman-deLuccia mechanism, which relies on a certain local energy condition. This is violated in our example by the nonsupersymmetric GB term. In the presence of fluxes this energy condition gets modified and its violation might be related to the Weak Gravity Conjecture.We expect that our techniques can be used to construct a plethora of new bubbles of nothing in any setup where the low-energy bordism group vanishes, including type II compactifications on CY3, AdS flux compactifications on 5-manifolds, and M-theory on 7-manifolds. This lends further evidence to the conjecture that any non-supersymmetric vacuum of quantum gravity is ultimately unstable.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


Sign in / Sign up

Export Citation Format

Share Document