scholarly journals Geological and geochemical studies on El-Missikat granites, Central Eastern Desert, Egypt

Author(s):  
Ibrahim m ABU EL-LEIL ALI ◽  
◽  
Abdellah Sadek TOLBA ◽  
Hamdy Ahmed Mohamed AWAD ◽  
Aleksey Valer’evich NASTAVKIN ◽  
...  

Objective. The present work deals with the detailed investigations of the geology, geochemistry, and tectonic setting of the studied granitic rocks. Research methods. This work involves both field work (Collection samples and drawing of a new geological map) and laboratory work (preparation of thin sections for petrographic studies by polarizing microscope), Atomic absorption, X-ray Fluorescence analysis (XRF) in the Central Laboratories of the Acme in Canada and Mass-Spectrometer with Inductively Coupled Plasma (ICPMS). Result. The study area restricted in the Central Eastern Desert of Egypt between the Red sea and the Nile Valley. ElMissikat pluton is covered by island arc related rock (as xenolith), older granites, and younger granites, in addition to different types of dikes and veins swarms. Petrographically older granites are classified into quartz diorite, tonalite and granodiorite, whereas the younger granites are divided into monzogranite, syenogranite and altered granites. The geochemical studies suggest the granitic rocks are calc-alkaline affinity. The quartz diorite, tonalite and granodiorite are related to volcanic arc granites, while the monzogranite and syenogranite are similar to the infinity of the within plate granites behavior. The quartz diorite, tonalite, granodiorite and monzogranite are belonging to I-type granite, otherwise the syenogranite has A-type granites. Conclusion. According to geological and petrographical studies the investigated granites are represented by quartz diorite, tonalite and granodiorite, whereas the younger granites are divided into monzogranite, syenogranite and altered granites that are traversed by different types of dikes and veins swarms . Generally, the older granites have low content of LILE, most probably due to the relatively low content of K-feldspars and HFSE. The younger granites exhibit a fractionated pattern from LREE to HREE with negative Eu anomaly.

Author(s):  
AWAD Hamdy Ahmed Mohamed ◽  
◽  
ALI Ibrahim Abu El-Leil ◽  
NASTAVKIN Aleksey Valer’evich ◽  
TOLBA Abdellah Sadek ◽  
...  

Objective. The current study aims to detect the geologic features, geochemical characteristics and tectonic setting of the investigated rock using field observations and geochemical analyses. Research methods. This work contains both field work (Collection samples and drawing of a new geological map) and laboratory work (preparation of thin sections for petrographic studies by polarizing microscope), X-ray Fluorescence analysis (XRF) in Institute of Biology, Southern Federal University and Mass-Spectrometer with Inductively Coupled Plasma (ICPMS) at the central Laboratory of Russian Geological Institute. Result. Investigated andesitic rock belongs to Dokhan volcanic that located in the Central Eastern Desert of Egypt a long Qena-Safaga Road. It is considered as one of the most important shear zones in Eastern Desert that includes distinctive rocks and economic mineral deposits. The investigated rock belongs to late to post tectonic magmatism of the East African Orogeny (EAO). Petrographically: Dokhan volcanic is represented by andesite according to petrographical studies. It consists of plagioclase, quartz, in addition to mafic minerals. Geochemically, the investigated andesite samples plotted in calk-alkaline nature. Conclusion. Tectonically, andesite samples fall in arc lava and continental fields. They are enriched in Ba, Sr, Rb, K, Nb and Ce with marked depletion in the most HFSEs like those of island arc calc-alkaline series.


2014 ◽  
Vol 6 (2) ◽  
pp. 113 ◽  
Author(s):  
Nedal Qaoud

Remote sensing data are used to discriminate between the different lithologies covering the Um Had area, Central Eastern Desert of Egypt. Image processing techniques applied to the Enhanced Thematic Mapper (ETM+) data are used for mapping and discriminating the different basement lithologies of Um Had area. Principal component analysis (PCA), minimum noise fraction (MNF) transform and band rationing techniques provide efficient data for lithological mapping. The study area is underlain by gneisses, ophiolitic melange assemblage (talc-serpentinite, metagabbro, metabasalt), granitic rocks, Dokhan volcanics, Hammamat sediments and felsites. The resulting gray-scale PC2, PC3 and PC4 images are best to clearly discriminate the Hammamat sediments, amphibolites and talc-serpentinites, respectively. The gray-scale MNF3 and MNF4 images easily discriminate the felsites and talc-serpentinites, respectively. The band ratio 5/7 and 4/5 images are able to delineate the talc-serpentinites and Hammamat sediments, respectively. Information collected from gray-scale and false color composite images led to generation of detailed lithologic map of Um Had area.


2020 ◽  
Vol 13 (20) ◽  
Author(s):  
Tao Luo ◽  
Gamal Kamal El-Din ◽  
Ibrahim Osman ◽  
Mohamed Abdelkareem

Sign in / Sign up

Export Citation Format

Share Document