rare metal
Recently Published Documents


TOTAL DOCUMENTS

849
(FIVE YEARS 284)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Anthony Chukwu

This study aims to account for the petrogenesis and mineralization of pegmatites around the Wowyen area, northcentral basement complex,Nigeria. Field studies, petrography and whole rock geochemistry (Major oxides were estimated by X-Ray Fluorescence while the trace elements were estimated by Inductively Coupled Plasma Mass Spectrometry) where the methods adopted. The pegmatites around Wowyen area are emplaced in the remobilized belt of the Nigerian Basement complex. They are predominantly complex pegmatites (rare-metal pegmatites) which are intruded in the biotite-muscovite gneiss while the simple pegmatites intruded more in the migmatitic banded gneiss. The major components of the complex pegmatites are quartz, albite and muscovite and tourmaline.The accessory constituents are garnet; ilmenites; cassiterite-columbitetantalite oxides in contrast to quartz, microcline and biotite of the simple pegmatites. The complex pegmatites show higher peraluminous than the simple pegmatites, however, higher fractionation is observed in the complex pegmatites than the simple pegmatites. The complex pegmatites are rather enriched in rare elements such as Li, Rb, B, Cs, Sn, Nb, Be and Ta and show low ratios in Al/Ga and K/Rb than the simple pegmatites. The pegmatites are likely product of sedimentary origin and originated from post-collisional tectonic event.


2022 ◽  
pp. 60-74
Author(s):  
Yuri Ezhkov ◽  
Rahmon Rahimov ◽  
Anvar Holiyorov ◽  
Ubaydullo Toshmetov

The Koshmansai ore field is located in the southern part of the granitoid Chatkal batholith, in its apical ledge and exocontact zones, in the Koshmansai river basin. The host environment of the granitoids is Lower Carboniferous carbonate rocks, which were primarily affected by intensive skarnification. Sedimentary-metamorphic and volcanics rocks and granitoids constitute the geological structure of the skarn rare-metal-polymetallic Koshmansai deposit. In the distribution of ore-forming and associated elе- ments in the mineral phases of skarn orebodies, their morphogenetic type plays a certain role. Thus, in bimetasomatic skarns, minerals accumulate more Cu, Zn, Ni, Te, Tl, Ge. In infiltration skarns, these are Ag, Pb, Bi, Cd, Sb, Co. Sulfide polymetallic mineralization in skarns is associated with quartz and calcite. The Koshmansai ore field has a distinct geochemical zoning, which can be subdivided into the Koshmansai rare- metal-polymetallic deposit at the upper levels of the ore field and the Nizhnekoshmansai rare-metal-copper ore occurrence at its lower levels. Nevertheless, orebodies formation proceeded in a similar thermodynamic environment, in the conditions of upper shielding at low temperature gradients, which makes it possible to consider the ore field as a single geochemical anomaly. The vertical geochemical zoning of ore-forming element halos determined by their concentration at the lower section levels of the Koshmansai deposit skarn orebodies suggests the expansion of its prospects in depth.


2022 ◽  
Vol 962 (1) ◽  
pp. 012001
Author(s):  
V A Abramova

Abstract The results of hydrogeochemical studies on the content of rare alkaline elements in man-made waters of mining facilities at Zavitinskoye, Orlovskoye, and Etykinskoye rare metal deposits of Eastern Transbaikalia are presented. Concentrations of these elements are determined both by the content in the ores and rocks of deposits and by their water-migration properties. It was found that the acidic sub-basement waters of the Orlovskoye and the quarry waters of the Zavitinskoye deposits contain abnormally high concentrations of lithium, up to 3.74 and 3.88 mg / L, respectively. The high content of lithium (Li) in the waters of these deposits was determined relative to the average values for the waters of the hypergenesis zone, as well as the standards of maximum permissible concentrations (MPC) of chemicals for water bodies used for fisheries, drinking water, and other activities.


2022 ◽  
Vol 117 (1) ◽  
pp. 213-236
Author(s):  
Qing-He Yan ◽  
He Wang ◽  
Guoxiang Chi ◽  
Qiang Wang ◽  
Huan Hu ◽  
...  

Abstract The rising demand of strategic metals, especially lithium, necessitates discovery of new resources to meet the global supply chain. Recently, several pegmatite-hosted rare metal (Li-Rb-Be-Nb-Ta) deposits have been discovered in the Western Kunlun orogenic belt, making it a new world-class rare metal resource (estimated ~7 Mt Li2O and 0.16 Mt BeO). Understanding the metallogenesis of this belt is critical to further evaluate the rare metal potential. In this study, columbite-tantalite (coltan) and monazite from rare metal pegmatites and zircon from potential parental granites were collected from five representative rare metal pegmatite deposits in the western, middle, and eastern parts of the Western Kunlun orogenic belt for U-Pb geochronology. The results indicate that despite the distances of the sampling localities in different parts of the Western Kunlun orogenic belt, the ages of pegmatite-hosted rare metal mineralization fall in a narrow range of ca. 208–204 Ma. These rare metal pegmatites are temporally and spatially related to adjacent postorogenic granites emplaced following the closure of the Paleo-Tethys Ocean. The compositional characteristics of K-feldspar, biotite, and muscovite of the granites and pegmatites, along with regional mineralogical and textural zonation of the pegmatites, suggest that the rare metal pegmatites were derived from the volumetrically much more important, highly fractionated granitic intrusions. We propose that, in combination with the data from previous studies, the 218–204 Ma interval represents a newly recognized rare metal metallogenic period linked with granitic intrusions in the Western Kunlun orogenic belt, revealing a 600-km-long late Triassic rare metal pegmatite belt composed of multiple ore fields formed in a similar metallogenic setting. These results emphasize the importance of identifying fertile, Late Triassic to Early Jurassic granitic intrusions for rare metal pegmatite exploration. Furthermore, combined with recent studies on the Songpan-Ganzi rare metal pegmatite belt along the eastern segment of the Paleo-Tethys, this study further highlights the great potential of rare metal resources in this global tectonic zone.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Zhen Wang ◽  
Jiankang Li ◽  
Zhenyu Chen ◽  
Qinggao Yan ◽  
Xin Xiong ◽  
...  

The Jiajika rare-metal deposit located in western Sichuan Province (China) is renowned as the largest lithium deposit in Asia, and the No. 134 pegmatite dike is the largest lithium pegmatite under mining conditions in the area. On the basis of a detailed characterization of textures and minerals in the Jiajika No. 134 pegmatite, two zones (the barren Zone Ⅰ and the spodumene Zone Ⅱ) and three subzones (Zone Ⅱ was subdivided into microcrystalline, medium-fine grained and coarse-grained spodumene zones) have been identified. The detailed mineralogical characteristics of lithium minerals and other indicator minerals from each zone were evaluated by EPMA for illustrating the magmatic–hydrothermal evolution and the cooling path of the Jiajika No. 134 pegmatite. From the outer zone inwards, grain size gradually increased, the typical graphic pegmatite zone was absent, and spodumene randomly crystallized throughout nearly the whole pegmatite body. This evidence indicated a Li-saturated melt prior to pegmatite crystallization, which could be the main cause of the super-large-scale Li mineralization of the Jiajika No. 134 pegmatite. A comparison of the Cs content between primary beryl in the Jiajika No. 134 pegmatite and other important Li-Cs-Ta pegmatites in the world indicates that No. 134 pegmatite shows a high degree of fractional crystallization. The evolution of mica species from muscovite to Li-micas from Zone Ⅰ to Zone Ⅱ marks the transition from the magmatic to the hydrothermal stage in pegmatite evolution. The absence of individual lepidolite and the relatively limited scale of alteration of spodumene (<10 vol%) suggest that the activity of the hydrothermal fluids in the system is limited, which contributes to the preservation of the easily altered Li ores and is also an important controlling factor of the super-large-scale Li mineralization of the pegmatite. Spodumene–quartz intergrowth (SQI) usually occurs partly along the rims of the spodumene grains in the Jiajika No. 134 pegmatite. Combined with the pegmatite mineral equilibria, the results of fluid inclusion studies of the pegmatite and the metamorphic conditions in the area, a constrained P-T path of the magmatic–hydrothermal crystallization of the Jiajika No. 134 pegmatite is proposed. The unusual steeply sloped cooling path of the No. 134 pegmatite could be attributed to the fast pressure drop triggered by the intrusion of a pegmatitic melt along the fractures surrounding the Majingzi granite, which could also be the dominant evolution process for other spodumene pegmatites with similar SQI features in the world. The feature of limited internal geochemical fractionation suggested by mineral-scale geochemical analyses of spodumene and micas, combined with the clear textural zoning of the No. 134 pegmatite, can best be ascribed to the effect of undercooling during pegmatite formation. This effect might be one of the non-negligible rules of pegmatite petrogenesis, and would significantly upgrade the potential of Li mineralization by minimizing diffusional Li transfer to the country rocks.


Author(s):  
Hiroshi Yabu ◽  
Kosuke Ishibashi ◽  
Manjit Singh Grewal ◽  
Yasutaka Matsuo ◽  
Naoki Shoji ◽  
...  

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 21-23
Author(s):  
D. G. Agafonov ◽  
◽  
G. B. Sadykhov ◽  
D. Y. Kop’yev ◽  
K. G. Anisonyan ◽  
...  

The article examines research on high-temperature reducing roasting of rare-earth-rare metal ores of the Chuktukon deposit. The effect of process temperature and consumption of reducing agent (coke) on distribution of niobium, manganese and phosphorus between metal and slag phases was studied. It was shown that a decrease in coke consumption in the range of 15–19 % promotes an increase in the extraction of niobium and manganese into the slag phase, while the reduction of phosphorus to metal increases with an excessive consumption of the reducing agent.


2021 ◽  
Author(s):  
A.A. Ismailova ◽  
N.A. Nurbaeva

A significant part of the territory of Kazakhstan is characterized by a high natural background radiation of soils and rocks, the spread of natural ground and underground waters with high concentrations of radionuclides in the regions of uranium, thorium and rare metal ore provinces and regions. Therefore, conducting high-quality radio monitoring of the state of the environment using modern information systems will make it possible to predict the background radiation in a timely manner and outline measures to reduce environmental risks to the health of the nation as a whole. Key words: radioecology, monitoring, life safety, radionuclides, national health.


Sign in / Sign up

Export Citation Format

Share Document