scholarly journals Cavity and replica methods for the spectral density of sparse symmetric random matrices

Author(s):  
Vito A. R. Susca ◽  
Pierpaulo Vivo ◽  
Reimer Kühn

We review the problem of how to compute the spectral density of sparse symmetric random matrices, i.e. weighted adjacency matrices of undirected graphs. Starting from the Edwards-Jones formula, we illustrate the milestones of this line of research, including the pioneering work of Bray and Rodgers using replicas. We focus first on the cavity method, showing that it quickly provides the correct recursion equations both for single instances and at the ensemble level. We also describe an alternative replica solution that proves to be equivalent to the cavity method. Both the cavity and the replica derivations allow us to obtain the spectral density via the solution of an integral equation for an auxiliary probability density function. We show that this equation can be solved using a stochastic population dynamics algorithm, and we provide its implementation. In this formalism, the spectral density is naturally written in terms of a superposition of local contributions from nodes of given degree, whose role is thoroughly elucidated. This paper does not contain original material, but rather gives a pedagogical overview of the topic. It is indeed addressed to students and researchers who consider entering the field. Both the theoretical tools and the numerical algorithms are discussed in detail, highlighting conceptual subtleties and practical aspects.

Ecology ◽  
2011 ◽  
Vol 92 (8) ◽  
pp. 1658-1671 ◽  
Author(s):  
David A. Miller ◽  
William R. Clark ◽  
Stevan J. Arnold ◽  
Anne M. Bronikowski

2019 ◽  
Vol 27 (2) ◽  
pp. 89-105 ◽  
Author(s):  
Matthias Löwe ◽  
Kristina Schubert

Abstract We discuss the limiting spectral density of real symmetric random matrices. In contrast to standard random matrix theory, the upper diagonal entries are not assumed to be independent, but we will fill them with the entries of a stochastic process. Under assumptions on this process which are satisfied, e.g., by stationary Markov chains on finite sets, by stationary Gibbs measures on finite state spaces, or by Gaussian Markov processes, we show that the limiting spectral distribution depends on the way the matrix is filled with the stochastic process. If the filling is in a certain way compatible with the symmetry condition on the matrix, the limiting law of the empirical eigenvalue distribution is the well-known semi-circle law. For other fillings we show that the semi-circle law cannot be the limiting spectral density.


Sign in / Sign up

Export Citation Format

Share Document